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Abstract

Supervised learning methods have been widely applied to ac-
tivity recognition. The prevalent success of existing methods,
however, has two crucial prerequisites: proper feature extrac-
tion and sufficient labeled training data. The former is im-
portant to differentiate activities, while the latter is crucial to
build a precise learning model. These two prerequisites have
become bottlenecks to make existing methods more practi-
cal. Most existing feature extraction methods highly depend
on domain knowledge, while labeled data requires intensive
human annotation effort. Therefore, in this paper, we propose
a novel method, named Distribution-based Semi-Supervised
Learning, to tackle the aforementioned limitations. The pro-
posed method is capable of automatically extracting powerful
features with no domain knowledge required, meanwhile, al-
leviating the heavy annotation effort through semi-supervised
learning. Specifically, we treat data stream of sensor readings
received in a period as a distribution, and map all training dis-
tributions, including labeled and unlabeled, into a reproduc-
ing kernel Hilbert space (RKHS) using the kernel mean em-
bedding technique. The RKHS is further altered by exploit-
ing the underlying geometry structure of the unlabeled distri-
butions. Finally, in the altered RKHS, a classifier is trained
with the labeled distributions. We conduct extensive experi-
ments on three public datasets to verify the effectiveness of
our method compared with state-of-the-art baselines.

Introduction
Human activity recognition has spurred a great deal of
interest with a wide spectrum of real-world applications,
such as security, personalized health monitoring and as-
sisted living (Janidarmian et al. 2017; Bulling et al. 2014;
Lara and Labrador 2013; Frank et al. 2010; Avci et al. 2010).
Generally, there are two types of scenarios:, wireless-sensor-
based and video-based. In this work, we focus on wireless-
sensor-based activity recognition scenarios. In these scenar-
ios, the data is often in the form of a continuous multivariate
time series from multiple sensors. Therefore, the data needs
to be divided into segments first, each of which correspond-
ing to a single label. Traditionally, it requires intensive an-
notation effort with the starting and ending times of each
activity. Further, in order to increase the expressiveness of
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data, feature extraction is commonly applied to each seg-
ment. Extracted features are then fed into a classifier to rec-
ognize different activities. Note that feature extraction and
large amount of labeled training data are crucial in the pro-
cess, which are discussed in detail hereinafter.

It is well-known that good features can help to discrim-
inate different classes of activities, by increasing the ex-
pressiveness of each activity. Generally, feature extraction
approaches can be classified into two categories: statistical
and structural (Lara and Labrador 2013). Structural features
take into account the overall information of the data. For
example, SAX method transforms continuous data into dis-
crete symbolic strings (Lin et al. 2007); ECDF method pre-
serves the overall shape and spatial information of time se-
ries data (Hammerla et al. 2013; Plötz et al. 2011). There-
fore, domain knowledge is highly required for structural fea-
tures. Statistical features, on the other hand, aim to capture
statistical information underlying each time-series segment.
There are also around twenty commonly used handcrafted
statistical features which are proven to be beneficial prac-
tically, including orders of moments (mean, variance, skew-
ness, etc), median, etc (Janidarmian et al. 2017). Major limi-
tations of statistical features are the flexibility of handcrafted
features and the involvement of domain knowledge. Re-
cently, Qian et al. (2018) proposed the SMMAR approach,
which is capable of automatically extracting all orders of
moments as statistical features for activity recognition.

Though SMMAR is able to systematically extract pow-
erful statistical features, as a supervised learning based
method, it requires a plethora of labeled data for training.
Note that label annotation on a large-scale dataset on sen-
sor readings is a costly process. Therefore, growing research
interests have been focused on exploring the trade-off be-
tween label ambiguity and human annotation effort. Some
researchers focus on efficient annotation strategies to reduce
labeling effort, including offline and online strategies (Sti-
kic et al. 2011), such as experience sampling, self-recall
and video recording. There also exist several research works
applying semi-supervised learning (Zhu 2005) for activity
recognition by exploiting unlabeled data, which is supposed
to be easy to collect with very low cost, to learn a precise
classifier even with a limited number of labeled data (Guan
et al. 2007; Stikic et al. 2009; 2011). Most existing semi-
supervised learning methods adopt handcrafted features.



In this paper, we propose a novel semi-supervised learn-
ing method, namely Distribution-based Semi-Supervised
Learning (DSSL), to free the intensive effort on feature en-
gineering by using the kernel mean embedding technique for
distributions (Berlinet and Thomas-Agnan 2011). To elabo-
rate, we treat data stream of sensor readings received in a pe-
riod as a probability distribution. Modeling input instances
as probability distribution is a new and promising machine
learning paradigm, and some methods have been success-
fully developed in the supervised learning manner, e.g.,
Support Measure Machines (SMMs) (Muandet et al. 2012;
2017). Recently, Qian et al. (2018) proposed a framework
based on SMMs for activity recognition, which is known as
SMMAR. A major advantage of SMMAR over other super-
vised learning methods for activity recognition is the capa-
bility of automatically extracting all the orders of statistical
moments as features to represent each input instance. Our
proposed method, DSSL, is an extension of SMMAR in the
semi-supervised learning manner. Compared with SMMAR

and other supervised or semi-supervised learning methods
for activity recognition, our contributions are 4-fold:

• Compared with other supervised or semi-supervised
learning methods, DSSL is able to represent each in-
stance, i.e., data stream of a period, using all the orders
of statistical moments implicitly and automatically, which
contains rich information to distinguish activities.

• Compared with SMMAR, DSSL relaxes its full supervi-
sion assumption, and is able to exploit unlabeled instances
to learn an underlying data structure. With the learned
structure and a few labeled instances, DSSL is able to
learn a precise classifier for activity recognition.

• Most existing works on learning with distributions are
supervised. To the best of our knowledge, DSSL is the
first attempt on semi-supervised learning with distribu-
tions. Moreover, we provide theoretical analysis proving
that DSSL is valid for semi-supervised learning in a re-
producing kernel Hilbert space (RKHS).

• Extensive experiments are conducted to demonstrate the
superior performance of DSSL over a number of state-of-
the-art baselines.

Other Related Work
Limited labeled training data is insufficient to train a good
classifier due to the cold start problem of supervised learn-
ing. Semi-supervised learning approaches are appealing in
practice since they require only a small fraction of labeled
training data with a large amount of easily obtained unla-
beled data (Chapelle et al. 2010; Zhu 2005). Among exist-
ing semi-supervised learning approaches, manifold regular-
ization (Sindhwani et al. 2005) and wrapping kernels using
point cloud (Belkin et al. 2006) are two classic methods,
which incorporates the manifold structure underlying both
unlabeled and labeled data into the learning of Support Vec-
tor Machines (SVMs).

In the context of activity recognition, Stikic et al. (2009)
proposed a multi-graph based semi-supervised approach
named GLSVM, where each graph propagates different

information of activities. Different graphs are then com-
bined to improve label propagation in graphs. After that,
an SVM classifier is trained by using both the initially la-
beled training data and the propagated labels. Matsushige
et al. (2015) proposed a semi-supervised kernel logis-
tic regression method for activity recognition, denoted
by SSKLR, which extends kernel logistic regression into
semi-supervised fashion, and solves the problem by the
Expectation-Maximization algorithm. Yao et al. (2016) pro-
posed a robust graph-based semi-supervised method named
RSAR to tackle the intra-class variability in activities across
different subjects. The RSAR method extracts the intrinsic
shared subspace structures from activities with the assump-
tion that intrinsic relationships have invariant properties thus
are less sensitive with varying subjects. In (Nazábal et al.
2016), a new Bayesian model is proposed to tackle the sce-
nario with a very low number of sensors. The dynamic na-
ture of human activities are further modeled as a first-order
homogeneous Markov chain. Our proposed DSSL is a uni-
fied framework that naturally inherits the spirit of learning
from distributions and manifold learning.

Preliminaries
Support Measure Machines In supervised learning with
distributions, we are given a set of labeled data {Xi, yi}ni=1,
where Xi = {xij}ni

j=1 and n′is may vary across different xi.
The goal is to learn a classifier f to map {Xi}’s to {yi}’s. In
SMMs (Muandet et al. 2012), each Xi is mapped to a func-
tional in a RKHS H via kernel mean embedding (Berlinet
and Thomas-Agnan 2011) as µPi

= Exij∼Pi
[k(xij , ·)],

where k(·, ·) is a characteristic kernel associated with the
RKHS H. It has been proven that if the kernel is character-
istic, then an arbitrary probability distribution Pi is uniquely
represented by an element µPi

in the RKHS, which implic-
itly captures all orders of statistical moments of Xi.

The inner product, i.e., a linear kernel, of two distribu-
tions, which measures their similarity, can be defined as
〈µPi

,µPj
〉 = 1

ninj

∑ni

a=1

∑nj

b=1 k(xia,xjb). One can also
define a nonlinear kernel of µPi

and µPj
to capture their

nonlinear relationships via

k̃(µPi
,µPj

)H̃ = 〈ψ(µPi
), ψ(µPj

)〉, (1)

where k̃(·, ·) is the nonlinear kernel induced by the nonlinear
feature map ψ(·), and H̃ is the corresponding RKHS.

To train a classifier from {Xi}’s to {yi}’s, SMMs define
the optimization problem by learning f ∈ H̃ that minimizes
the following regularized risk functional

1

n

n∑
i=1

`(µPi
, yi, f) + Ω(‖f‖H̃), (2)

where `(·) is the loss function and Ω(·) is the regularization
term. Note that H̃ = H if k̃ is linear.

Random Fourier Features Approximation The kernel
embedding technique of distributions used in SMMs is com-
putationally expensive as it requires to compute kernel ma-
trices. This makes it impractical in some real-world applica-
tions when the size of the dataset is large. To scale up SMMs,



Qian et al. (2018) proposed an accelerated version using
Random Fourier Features to construct an explicit feature
map instead of using the kernel trick. Based on Bochner’s
Theorem (Rahimi and Recht 2007), a continuous, shift-
invariant positive definite kernel k(x,x′) can be linearized
by using the randomized feature map z : Rd → RD as

k(x,x′) = 〈φ(x), φ(x′)〉 ≈ z(x)>z(x′), (3)

where the inner product of explicit feature maps can uni-
formly approximate the kernel values without the kernel
trick, and the random Fourier features are generated by:

zw(x) =
√

2cos(w>x + b), (4)

where w ∼ p(w), which is k(·, ·)’s Fourier transform dis-
tribution on RD, and b is sampled uniformly from [0, 2π]. It
can be proven that k(x,x′) = E(zw(x)>zw(x′)) for all x
and x′. In practice, D can be small, which enables SMMs to
handle large-scale datasets.

The Proposed Methodology
Problem Statement
In our project setting of activity recognition, we are given
a set of l labeled segments data {Xi, yi}li=1, and a set of
u = n − l unlabeled segments {Xi}i=ni=l+1 as training data
obtained by applying segmentation methods on the raw data,
where Xi = [xi1 ... xini

] ∈ Rd×ni , yi ∈ {1, ..., L}, l � u,
and ni may vary across different segments. The goal is to
make use of both labeled and unlabeled segments to learn a
classifier from each segment X to its corresponding label y.

Following (Qian et al. 2018), each segment Xi, includ-
ing both labeled and unlabeled, is treated as a sample of ni
data points drawn from an unknown distribution Pi. Ker-
nel mean embedding is then applied to map each Xi to an
element µPi

in a RHKS. In practice, to make the learn-
ing process more efficient, random Fourier features are used
to approximate the nonlinear feature map induced by the
kernel of the RKHS via µPi

= 1
ni

∑ni

j=1 z(xij). where
µPi
∈ RD. Therefore, our goal becomes to learn a classi-

fier f : µP → yi from {µPi
, yi}li=1 and {µPi

}i=ni=l+1.

Distribution-based Semi-Supervised Learning
Borrowing the idea from manifold regularization (Belkin
et al. 2006) and the technique on warping data-dependent
kernels (Sindhwani et al. 2005), we aim to incorporate the
underlying manifold structure of both labeled and unla-
beled data into the learning of a classifier via warping a
RKHS. Specifically, we wrap the RKHS H̃ defined in (1)
to another RKHS H̆ by leveraging unlabeled training seg-
ments or distributions to reflect the underlying geometry of
{ψ(µPi

)}’s. Notations on different kernels and their corre-
sponding RKHSs used in this paper are summarized in Ta-
ble 1. The new RKHS H̆ is associated with the new kernel
k̆, which is data-dependent for semi-supervised learning. We
will discuss how to achieve the kernel as well as the result-
ing new space later. Here, we assume the new kernel k̆ is

Table 1: Notations of different kernels used in the paper
Kernel Space Descriptions
k H kernel mean embedding of distributions

k̃ H̃ kernel on the embedded distributions

k̆ H̆ data-dependent kernel constructed based
on k̃ for semi-supervised learning

constructed, then the revised optimization problem over H̆
is formulated as

f∗ = arg min
f∈H̆

1

l

l∑
i=1

`(µPi
, yi, f) + ‖f‖2H̆, (5)

where `(·) is the loss function. Note the objective function
looks similar to that in the supervised learning setting in (2).
However, in (5) the RKHS, where the functional to be op-
timized is H̆, which is influenced by both labeled and un-
labeled distributions, while the RKHS in (2) is H̃, which
is defined by labeled distributions only. The new optimiza-
tion probelm raises a potential problem: f is to be learned in
H̆, while the input space of µPi

is H. As these RKHSs are
not the same, how to calculate the loss function remains a
problem. To sum up, in order to solve the optimization prob-
lem (5), three crucial questions need to be answered:

• How to construct the data-dependent kernel k̆ by incorpo-
rating unlabeled training data?

• Is the new space H̆ valid?

• How to calculate the loss function given µP ∈ H and
f ∈ H̆ are not in the same space?

In the following, we investigate the questions one by one.

1) Construction of the Data-dependent Kernel k̆ Since
unlabeled data may shed light on the underlying structure
and manifolds of all data, now the problem becomes how
to appropriately construct such a valid RKHS H̆ from H̃ to
achieve so. We first define H̆ to be the space of functionals
from H̃ with the following modified inner product:

〈f, g〉H̆
∆
= 〈f, g〉H̃ + 〈Sf, Sg〉V , (6)

where V is a linear space and S : H̃ → V is a bounded lin-
ear operator. The first term in (6) is the common definition
of inner product between two functionals, while the second
term with the operator S reflects that unlabeled embedded
distributions alter our beliefs in the overall structure. De-
note by f(µ)=(f(µP1

), ..., f(µPn
)), we have 〈Sf, Sf〉V =

f(µ)M f(µ)> with M being a positive semidefinite matrix.

2) Validity of H̆

Theorem 1. H̆ is a valid RKHS.

A space is valid if it is bounded and complete.



3) Loss Function Calculation Based on Theorem 1, we
have the following propositions.

Proposition 1. H̆ = H̃.
The two spaces are the same if each of the space is the

subset of the other space. Although the two spaces are the
same, the kernels therein are not identical. However, they are
connected due to the involvement of unlabeled distributions.
Proposition 2. K̆ = (I + K̃M)−1K̃, where K̃ with K̃ij =

k̃(µPi
,µPj

) is the kernel matrix for H̃ on µPi
’s, and K̆ is

the kernel matrix in the altered space H̆.
Note that detailed proofs and derivations of theorems and

propositions introduced in this section can be found in the
next section. The complexity of the above kernel seems to be
a potential problem when the data scales up, since it involves
matrix multiplication as well as matrix inversion. However,
when conducting experiments on large scale activity recog-
nition datasets, the problem actually is not severe in practice.
The reason is that the entries of kernels are dependent on the
number of distributions, i.e., number of segments, each con-
taining a repetition of activity, instead of the number of total
instances, i.e., one entry for each timestamp equivalent to
the product of # sample and # instances per sample. Other
feasible solutions to further alleviate this problem include
matrix factorization, low-rank approximation (Bach and Jor-
dan 2005), etc. Data selection or feature selection (Nie et al.
2010) can be conducted on training data beforehand to keep
a small fraction of key training data. The proposed method
can be further developed in an online learning fashion (Hoi
et al. 2014), so that the matrix are maintained in a small
scale.

Note that the choice of M is crucial regarding how to
properly incorporate unlabeled embedded distributions. In
this paper, we set M to be M = rL2, where r is a scalar
and L = D−W is the Laplacian matrix, which is widely
used in semi-supervised learning (Sindhwani et al. 2005;
Belkin et al. 2006) to model the geometry structure underly-

ing the data. To be specific, Wij = exp
(
−
‖µPi

−µPj
‖2

2σ2

)
if

µPi
and µPj

are connected in the graph, and D is the diago-
nal matrix withDii =

∑
jWij . Based on the following The-

orem 2 (whose derivations are at the end of the paper), the
solution for the optimization problem in (5) can be expressed
as a linear combination of the functionals {k̆(µPi

), ·}li=1 as

f∗(µP) =

l∑
i=1

αik̆(µP,µPi
). (7)

Theorem 2 (Representer Theorem for the pro-
posed DSSL method). Given l labeled distributions
{(P1, y1), ..., (Pl, yl)} ∈ P × R, a loss function
` : (P × R2)l → R ∪ {+∞} and a strictly monoton-
ically increasing real-valued function Ω on [0,+∞), the
minimizer of the regularized risk functional

`(P1, y1,EP1 [f ], ...,Pl, yl,EPl
[f ]) + Ω(‖f‖H̆), (8)

admits an expansion f =
∑l
i=1 αik̆(µPi

, ·), where αi ∈ R,
for i = 1, ..., l.

Detailed Proofs
Proof of Theorem 1 Let’s start with H̃ with the kernel k̃.
Since H̃ is a complete Hilbert space, and evaluation func-
tionals therein are bounded, i.e., ∀µ∈H, f ∈ H̃,∃ Cµ ∈R,
s.t. |f(µ)|≤Cµ‖f‖H̃. Moreover, the bounded operator S is
bounded by a constant D, i.e., ‖S‖= sup

f∈H̃

‖Sf‖V
‖f‖H̃

≤D. The

complete H̃means every Cauchy sequence in the space con-
verges to an element in H̃. Let (fn) be a Cauchy sequence
in H̃ converging to f , then ∀ε>0,∃ an integer N(ε), s.t.

m > N(ε), n > N(ε)⇒ ‖fm − fn‖H̃ <
ε√

1 +D2
.

Now let’s turn to H̆. We need to prove the completeness
of the space first. According to the definition in Eq. (6), we
obtain that for any Cauchy sequence in H̆,

‖fm − fn‖2H̆ = ‖fm − fn‖2H̃ + ‖S(fm − fn)‖2V
≤ ‖fm − fn‖2H̃ +D2‖fm − fn‖2H̃

=⇒ ‖fm − fn‖H̆ ≤
√

1 +D2‖fm − fn‖H̃
<
√

1 +D2 × ε√
1 +D2

= ε.

Hence H̆ is complete since every Cauchy sequence in H̆
converges to an element in H̆. Moreover, H̆ is bounded
based on the property that any Cauchy sequence is
bounded (Berlinet and Thomas-Agnan 2011, Lemma 5).
This completes the proof.

Proof of Proposition 1 Firstly, we decompose H̆ to two
orthogonal parts as

H̆ = span{k̆(µP1
, ·), ..., k̆(µPl

, ·)} ⊕ H̆⊥,

where H̆⊥ vanishes at all labeled embedded distributions,
i.e.,

∀f ∈ H̆⊥, i ∈ {1, ..., l}, f(µPi
) = 0. (9)

Accordingly Sf = 0, which means 〈f, g〉H̆ =

〈f, g〉H̃,∀f ∈ H̆⊥, g ∈ H̆. Moreover,

f(µP) = 〈f, k̆(µP, ·)〉H̆ = 〈f, k̃(µP, ·)〉H̃
= 〈f, k̃(µP, ·)〉H̃ + 〈Sf, Sk̃(µP, ·)〉V
= 〈f, k̃(µP, ·)〉H̆.

Thus, we have

∀f ∈ H̆⊥, 〈f, k̃(µP, ·)− k̆(µP, ·)〉H̆ = 0. (10)

That is k̃(µP, ·) − k̆(µP, ·) ∈ (H̆⊥)⊥. By substituting (9)
into (10), we obtain k̃(µPi

, ·) ∈ (H̆⊥)⊥, ∀i, which means

span{k̃(µPi
, ·)}li=1 ⊆ span{k̆(µPi

, ·)}li=1. (11)

Secondly, we decompose H̃ as H̃ =
span{k̃(µPi

, ·)}li=1 ⊕ H̃⊥. Similarly, we have

〈f, k̃(µPi
, ·)〉H̃ = 0, ∀f ∈ H̃⊥, ∀i ∈ {1, ..., l}.



As Sf = 0, we have 〈f, g〉H̃ = 〈f, g〉H̆, and

f(µP) = 〈f, k̃(µP, ·)〉H̃ = 〈f, k̆(µP, ·)〉H̆
= 〈f, k̆(µP, ·)〉H̃ + 〈Sf, Sk̆(µP, ·)〉V
= 〈f, k̆(µP, ·)〉H̃.

Therefore, we have 〈f, k̆(µP, ·) − k̃(µP, ·)〉H̃ = 0. Since
f ∈ H̃⊥, it becomes 〈f, k̆(µP, ·)〉H̃ = 0, i.e., k̆(µP, ·) ∈
(H̃⊥)⊥. Therefore, we have

span{k̆(µPi
, ·)}li=1 ⊆ span{k̃(µPi

, ·)}li=1. (12)

Finally, by considering both (11) and (12), we conclude that
the two spans are the same. This completes the proof.

Proof of Proposition 2 Based on Proposition 1, we have

k̆(µP, ·) = k̃(µP, ·) +

n∑
j=1

βj(µP)k̃(µPj
, ·), (13)

where the coefficients βj depend on µP. If we can obtain
the exact formulation for βj , then we can derive relations
between two spaces by explicit forms. To find βj , we use a
system of linear equations generated by evaluating k̃(µPi

, ·)
at µP:

〈k̃(µPi
, ·), k̆(µP, ·)〉H̆

= 〈k̃(µPi
, ·), k̃(µP, ·) +

n∑
j=1

βj(µP)k̃(µPj
, ·)〉H̆

= 〈k̃(µPi
, ·), k̃(µP, ·) +

n∑
j=1

βj(µP)k̃(µPj
, ·)〉H̃ + k̃

>
µPi
Mg,

where k̃
>
µPi

=
(
k̃(µPi

,µP1
), ..., k̃(µPi

,µPn
)
)

and

g consists of components gi = k̃(µP,µPi
) +∑n

j=1 βj(µP)k̃(µPj
,µPi

). Then we have the fol-
lowing linear equation for the coefficients β(µP) =
(β1(µP), ..., βn(µP))>:

−M k̃µP = (I +MK̃)β(µP). (14)

Based on (13) and (14), we obtain the following explicit
form for k̆(·, ·):

k̆(µPi
,µPj

) = k̃(µPi
,µPj

)− k̃>µPi
(I +MK̃)−1Mk̃µPj

.

The above equation can be written in the following concise
matrix form:

K̆ = K̃ − K̃(I +MK̃)−1MK̃. (15)

It can be shown that by applying the Sherman-Morrison-
Woodbury (SMW) identity, (15) can be further rewritten as

K̆ = (I − K̃(I +MK̃)−1M)K̃ = (I + K̃M)−1K̃. (16)

This completes the proof.

Proof of Theorem 2 Any functional f ∈ H̆ can
be uniquely decomposed into a component fµ in the
space spanned by the kernel mean embedding fµ =∑l
i=1 αik̆(µPi

, ·), and a component f⊥ orthogonal to it, i.e.,
〈f⊥, k̆(µPj

, ·)〉 = 0, ∀j ∈ {1, ..., l}. Therefore, we have

f = fµ + f⊥ =

l∑
i=1

αik̆(µPi
, ·) + f⊥.

Thus, for all j, we can further induce that

EPj
[f ] =

〈
l∑
i=1

αik̆(µPi
, ·) + f⊥, k̆(µPj

, ·)

〉

=

〈
l∑
i=1

αik̆(µPi
, ·), k̆(µPj

, ·)

〉
.

This indicates the loss function term in (8) does not depend
on f⊥. Besides, the second term Ω(·) in (8) is strictly mono-
tonically increasing, so we have

Ω(‖f‖H̆) = Ω

(∥∥∥∥∥
l∑
i=1

αik̆(µPi
, ·) + f⊥

∥∥∥∥∥
H̆

)

= Ω


√√√√∥∥∥∥∥

l∑
i=1

αik̆(µPi
, ·)

∥∥∥∥∥
2

H̆

+ ‖f⊥‖2H̆


≥ Ω

(∥∥∥∥∥
l∑
i=1

αik̆(µPi
, ·)

∥∥∥∥∥
H̆

)
,

where the equality holds if and only if f⊥ = 0. Therefore,
the first term in (8) is independent of f⊥ and the second
term reaches its minimum when f⊥ = 0. Consequently, any
minimizer must take the form f = fµ =

∑l
i=1 αik̆(µPi

, ·).
This completes the proof.

Experiments
We conduct experiments on 3 sensor-based activity datasets.
The statistics are listed in Table 2. Skoda records 10 ges-
tures in car maintenance scenarios with 20 acceleration sen-
sors being put on the arms of the subject (Stiefmeier et al.
2007). Each gesture is repeated around 70 times. The transi-
tions between two gestures are labeled as Null class, which
are also considered as activities. WISDM uses accelerometer
sensors embedded in the phones to collect six regular activ-
ities: jogging, walking, ascending stairs, descending stairs,
sitting and standing (Kwapisz et al. 2010). HCI composes
of gestures with the hand describing different shapes: a cir-
cle, a square, a pointing-up triangle, an upside-down trian-
gle, and an infinity symbol (Förster et al. 2009). Each ges-
ture is recorded over 50 repetitions, and about 5 to 8 seconds
per repetition. Null class exists as well in HCI dataset.

Experimental Setup
Following the criteria in (Qian et al. 2018), we adopt both
micro-F1 score (miF) and weighted macro-F1 score (maF)



Table 2: Statistics of datasets used in experiments.
Datasets # Sample # Instances per sample # Feature # Class
Skoda 1,447 68 60 10
HCI 264 602 48 5
WISDM 389 705 6 6

to evaluate the performance of different methods. All the
reported results are the average values together with the
standard deviation over 6 random splits for training and
testing. Each dataset is randomly split into 3 subsets: la-
beled training set, unlabeled training set and test set. Each
subset is set to contain activities of all classes. We set
the ratio to be 0.02:0.1:0.88 and fix r = 100. The im-
pact of differentiating r will be discussed later. Different
from experimental setups in existing papers that set la-
beled data’s ratio to be quite large (Matsushige et al. 2015;
Stikic et al. 2009), we deliberately set the labeled data’s ratio
to be extremely small. Hence, our method requires fewer la-
bels and thus more practical with regards to applicability in
reality. Evaluations are conducted on the test set. We adopt
RBF kernels for all the kernels used in the experiments.

Baselines We compare the proposed DSSL method with
the following state-of-the-art methods.

• State-of-the-art supervised methods with various features:

– SVMs (Chang and Lin 2011): as SVM is a vectorial-
based classifier, we use mean, variance, etc to generate
a feature vector for each segment.

– SAX-a (Lin et al. 2007) treats data as strings, and
structural features are extracted. We follow the settings
in (Lin et al. 2007) with no dimension reduction. The
parameter alphabet size range is a ∈ {3, 6, 9}.

– ECDF-d (Hammerla et al. 2013; Plötz et al. 2011) ex-
tracts d descriptors from each sensor’s each dimension.
d ∈ {5, 15, 30, 45}.

Note that the overall shape and spatial features besides
the mean and variance features are concatenated before
applying the SVM classifier.

• State-of-the-art supervised method based on distributions,
SMMAR (Qian et al. 2018).

• Classic vectorial-based semi-supervised methods:

– LapSVM (Belkin et al. 2006) is an extension of SVM
with manifold regularization.

– 5TSVM (Chapelle and Zien 2005) is a Transductive
SVM by using gradient descent for training. As this
is a transductive approach rather than a truly semi-
supervised learning approach, we make the test data
available in the training phase of this method.

• State-of-the-art semi-supervised methods specifically de-
signed for activity recognition:

– SSKLR (Matsushige et al. 2015) is a semi-supervised
kernel logistic regression method with Expectation-
Maximization algorithm.

– GLSVM (Stikic et al. 2009) is a multi-graph method
where each graph captures different aspects of the ac-
tivities.

Experimental Results
Overall Experimental Results The experimental results
are presented in Table 3. The proposed DSSL consistently
performs the best on all datasets. DSSL outperforms all the
other methods by 5.6%, 17.7%, and 14.4% respectively on
three datasets in terms of miF. This favorably indicates the
effectiveness of the proposed DSSL. Note that in Table 3, the
performances of the comparison methods on WISDM are
much worse than those on the other two datasets. This may
be due to the data complexity caused by the large number
of subjects in WISDM. On datasets Skoda and HCI, the per-
formance ranking is DSSL > SMMAR > SVMs ≈ ECDF
> SAX, which reveals that 1) distribution-based methods
are more capable of distinguishing different activities; 2)
feature extraction plays an important role and string-based
data representation in SAX is not that proper for activity
data compared to ECDF; 3) with the increase of descriptor
d, the performance of ECDF is increasing in HCI dataset
while decreasing in Skoda and WISDM, meaning ECDF
may be task-dependent. However, note that SMMAR per-
forms the worst on WISDM dataset, which illustrates that
distribution-based methods are more dependent on the num-
ber of labeled data than vectorial-based methods. This in-
deed reflects the motivation of our proposed method. Never-
theless, DSSL does not suffer from this limitation ascribed to
its semi-supervised fashion. For semi-supervised methods,
the ranking is DSSL > LapSVM ≈ GLSVM ≈ 5TSVM >
SSKLR, which demonstrates the prevalence of graph-based
methods over logistic regression method for activity data.

Impact of Ratio of Labeled Data To analyze the impact
on the proportion of labeled training data, we conduct ex-
periments on WISDM dataset. We fix the ratio of test data
and unlabeled training data to be 20% and 20% respectively,
and alter the ratio of labeled training data to be {0.02, 0.05,
0.1, 0.3, 0.5, 0.7, 0.9} of the rest 60% data. The results are
depicted in Figure 1(a). DSSL performs the best under all
the ratios. When more labeled training data becomes avail-
able, all methods perform better. Moreover, distributional-
based method (SMMAR) has larger performance enhance-
ment than vectorial-based methods, which further verifies
the superiority of learning from distributions.

Impact of Ratio of Unlabeled data We investigate the in-
fluence of unlabeled data by fixing the ratio of labeled train-
ing data and test data to be 1% and 20%, respectively, and
modifying unlabeled training data to be {0.1, 0.3, 0.5, 0.7,
0.9} of the remaining 79% data. Note that supervised meth-
ods (SMMAR, SVMs) and transductive methods (5TSVM)
perform the same under this setting, while the performances
of semi-supervised methods keep increasing with more un-
labeled training data as shown in Figure 1(b).

Impact of parameter r In previous experiments, we fix
r= 100. Here we conduct sensitivity test on r. As indicated
in Fig. 1(c), the performance of DSSL on test data keeps sta-



Table 3: Experimental results on 3 activity datasets (unit: %).
Methods Skoda HCI WISDM

miF maF miF maF miF maF

Vectorial-based supervised

SVMs 85.7±1.8 42.5±0.9 69.7±9.6 69.6±9.4 41.5±5.2 39.6±6.8
SAX 3 39.6±6.3 18.7±2.9 36.0±3.0 34.7±2.5 34.6±1.4 30.6±1.2
SAX 6 37.2±6.1 18.6±2.8 39.7±7.3 38.4±7.9 34.9±3.0 30.5±5.0
SAX 9 40.3±6.5 19.9±3.2 39.8±8.7 37.0±9.2 33.6±2.9 28.8±5.8
ECDF 5 84.2±2.1 41.6±1.0 67.7±10.1 67.6±9.1 42.1±6.3 40.5±7.7
ECDF 15 79.8±1.5 39.2±0.7 68.4±10.4 68.5±9.6 39.4±3.3 36.2±5.7
ECDF 30 72.6±1.2 35.4±0.3 68.6±11.1 68.7±10.5 37.7±2.5 32.6±4.9
ECDF 45 65.7±2.5 31.5±1.3 68.6±11.4 68.6±10.8 36.4±1.4 31.3±3.6

Vectorial-based semi-supervised

LapSVM 89.7±2.1 44.6±1.2 76.1±4.8 76.3±4.7 40.1±3.8 34.5±3.5
5TSVM 85.9±2.7 84.8±2.8 75.4±11.5 75.5±11.2 41.3±5.6 39.4±6.9
SSKLR 25.4±19.3 12.1±2.5 24.2±17.2 18.1±10.1 24.6±17.0 17.3±9.9
GLSVM 89.7±2.1 44.5±1.2 75.7±5.8 75.7±5.7 40.4±3.8 33.9±4.0

Distribution-based supervised SMMAR 93.2±0.9 93.1±1.0 82.2±13.4 78.9±18.4 20.5±3.3 11.7±3.9
Distribution-based semi-supervised DSSL 98.8±0.5 98.8±0.5 99.9±0.2 99.9±0.2 56.5±5.1 55.6±5.0
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Figure 1: Performance of DSSL on WISDM under different settings (in miF).

ble when r ∈ [10−6, 1]. When r becomes larger, the perfor-
mance of DSSL begins to decrease. This observation indi-
cates that r balances the tradeoff between labeled and unla-
beled data. Larger r implies stronger emphasis on unlabeled
data. More importantly, under all different r values, DSSL
consistently outperforms all other methods. Fig. 1(c) shows
the best baseline, i.e., ECDF 5 in WISDM’s case.
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Figure 2: Impact of D to the performance on WISDM.

Impact on random Fourier feature (RFF) dimension
D We analyze how R-DSSL accelerates DSSL with D-
dimensional explicit statistical features. The experiments are

conducted on a Linux server with Intel(R) Xeon(R) E5-2695
2.40GHz CPU. As shown in Fig. 2, R-DSSL steadily out-
performs the best baseline when D ≥ 2. Note that R-DSSL
performs slightly worse than DSSL due to its approxima-
tion nature, however it requires less computational run time
when D < 8 compared to DSSL.

Conclusion
In this paper, we propose a semi-supervised learning frame-
work, DSSL, for sensor-based activity recognition prob-
lems. The proposed DSSL naturally embeds automatic fea-
ture extraction and classification in a semi-supervised learn-
ing manner. Extensive experiments are conducted on three
activity datasets to demonstrate the superiority of DSSL
compared with a number of state-of-the-art methods.

Acknowledgments
This research is supported, in part, by the National Re-
search Foundation, Prime Minister’s Office, Singapore un-
der its IDM Futures Funding Initiative, the Singapore
Ministry of Health under its National Innovation Chal-
lenge on Active and Confident Ageing (NIC Project No.
MOH/NIC/COG04/2017 and MOH/NIC/HAIG03/2017),
and the Interdisciplinary Graduate School, Nanyang Tech-



nological University under its Graduate Research Schol-
arship. Sinno J. Pan thanks the support from the NTU
Singapore Nanyang Assistant Professorship (NAP) grant
M4081532.020.

References
Akin Avci, Stephan Bosch, Mihai Marin-Perianu, Raluca
Marin-Perianu, and Paul J. M. Havinga. Activity recog-
nition using inertial sensing for healthcare, wellbeing and
sports applications: A survey. In ARCS Workshops, pages
167–176, 2010.
Francis R. Bach and Michael I. Jordan. Predictive low-rank
decomposition for kernel methods. In ICML, pages 33–40,
2005.
Mikhail Belkin, Partha Niyogi, and Vikas Sindhwani. Man-
ifold regularization: A geometric framework for learning
from labeled and unlabeled examples. Journal of Machine
Learning Research, 7:2399–2434, 2006.
Alain Berlinet and Christine Thomas-Agnan. Reproducing
kernel Hilbert spaces in probability and statistics. Springer
Science & Business Media, 2011.
Andreas Bulling, Ulf Blanke, and Bernt Schiele. A tutorial
on human activity recognition using body-worn inertial sen-
sors. ACM Comput. Surv., 46(3):33:1–33:33, 2014.
Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library
for support vector machines. ACM Trans. Intell. Syst. Tech-
nol, 2(3):27:1–27:27, 2011.
Olivier Chapelle and Alexander Zien. Semi-supervised clas-
sification by low density separation. In AISTATS, 2005.
Olivier Chapelle, Bernhard Schlkopf, and Alexander Zien.
Semi-Supervised Learning. The MIT Press, 2010.
Kilian Förster, Daniel Roggen, and Gerhard Tröster. Unsu-
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