Sensor-based Activity Recognition via Learning from Distributions

Hangwei Qian, Sinno Jialin Pan, Chunyan Miao

Nanyang Technological University, Singapore

February 6, 2018

Outline

- Overview of human activity recognition
- Existing solutions
- The proposed method: SMM_{AR} with kernel embedding of distributions
- The proposed method: R-SMM_{AR} with Random Fourier Features
- Experimental Results
- Conclusion

Human Activity Recognition

- A multi-class classification problem
 - Input: sensor data
 - Output: activity labels

Human Activity Recognition

Tremendous applications:

- eldercare
- healthcare
- smart building
- gaming

Existing Feature Extraction Methods

 $\text{Frame-level} \rightarrow \text{vectorial-based}$

• Manual feature engineering, statistics of each frame

 $\text{Segment-level} \rightarrow \text{matrix-based}$

- Statistical, i.e., moments of each segment
- Structural
 - The ECDF method
 - The SAX method

	time_1	time_2	time_3	time_4	time_5
feature_1	0.9134	0.2785	0.9649	0.9572	0.8147
feature_2	0.9058	0.6324	0.5469	0.1576	0.4854
feature_3	0.127	0.0975	0.9575	0.9706	0.8003

Existing Feature Extraction Methods

 $\text{Frame-level} \rightarrow \text{vectorial-based}$

• Manual feature engineering, statistics of each frame

 $\text{Segment-level} \rightarrow \text{matrix-based}$

- Statistical, i.e., moments of each segment
- Structural
 - The ECDF method
 - The SAX method

 $\textbf{Frame-level} \rightarrow \textbf{vectorial-based}$

• Manual feature engineering, statistics of each frame

 $\text{Segment-level} \rightarrow \text{matrix-based}$

- Statistical, i.e., moments of each segment
- Structural
 - The ECDF method
 - The SAX method

Can we extract as many discriminative features as possible, in an automatic fashion?

- \rightarrow kernel mean embedding of distributions
- \rightarrow NO information loss

Motivation

 $(\mathbb{E}[x])$ as features

problem: many distributions have the same mean!

 $(\mathbb{E}[x])$ as features

problem: many distributions have the same mean!

$$\mathbb{E}[x] \\ \mathbb{E}[x^2]$$
 as features

problem: many distributions have the same mean and variance!

 $(\mathbb{E}[x])$ as features

problem: many distributions have the same mean!

$$\mathbb{E}[x] \\ \mathbb{E}[x^2]$$
 as features

F

problem: many distributions have the same mean and variance!

problem: many distributions still have the same first 3 moments!

The **infinite dimensional features** should be able to discriminate different distributions! Two novel approaches for HAR

- **SMM**_{AR}: a novel feature extraction approach for activity recognition
 - input data in matrix form
 - no assumption on distributions
 - Retain all the statistics of the data in infinite dimensions
- **R-SMM**_{AR}: SMM_{AR} with Random Fourier Features [1]
 - an accelerated approach for SMM_{AR}
 - comparable performance
 - solution for large-scale problems

Kernel Mean Embedding of Distributions

Figure 1:

Illustrations of kernel mean embeddings of a distribution and embeddings of empirical examples

$$\mu[P_x] = E_x[k(\cdot, x)] \tag{1}$$

$$\mu[X] = \frac{1}{m} \sum_{i=1}^{m} k(\cdot, x_i) \tag{2}$$

Here $X = \{x_1, ..., x_m\} \stackrel{i.i.d.}{\sim} P_x$.

Kernel Mean Embeddings of Distributions

Figure 2: Illustration of the kernel mean embedding of two different distributions

Injectivity[3]

A universal kernel *k* can promise an injective mean map $\mu: P_x \rightarrow \mu[P_x]$.

Learning from Distributions

$$\langle \hat{\boldsymbol{\mu}}_{\mathbb{P}_{x}}, \hat{\boldsymbol{\mu}}_{\mathbb{P}_{z}} \rangle = \tilde{k}(\hat{\boldsymbol{\mu}}_{\mathbb{P}_{x}}, \hat{\boldsymbol{\mu}}_{\mathbb{P}_{z}}) = \frac{1}{n_{x} \times n_{z}} \sum_{i=1}^{n_{x}} \sum_{j=1}^{n_{z}} k(\mathbf{x}_{i}, \mathbf{z}_{j}), \quad (3)$$

$$k(\boldsymbol{\mu}_{\mathbb{P}_{x}},\boldsymbol{\mu}_{\mathbb{P}_{z}}) = \langle \psi(\boldsymbol{\mu}_{\mathbb{P}_{x}}), \psi(\boldsymbol{\mu}_{\mathbb{P}_{z}}) \rangle$$
(4)

Problem Formulation

- Training set: $\{(P_i, y_i)\}, i \in \{1, ..., N\}, x_i \sim P_i, x_i = \{x_{i1}, ..., x_{im_i}\}, y_i \in \{1, ..., L\}$
- Multi-class classifier $\rightarrow C_L^2$ binary classifiers $f, y = f(\phi(\mu_x)) + b$
- Primal Optimization problem:

$$argmin_{f,b} \frac{1}{2} \|f\|_{\mathcal{H}}^{2} + C \sum_{i=1}^{N} \xi_{i}$$

$$s.t.y_{i} = f(\phi(\mu_{x_{i}})) + b$$

$$y_{i}f(\phi(\mu_{i})) \geq 1 - \xi_{i}, \forall i$$

$$\xi_{i} \geq 0, \forall i$$
(5)

Bottleneck of SMM_{AR}: Computational Cost

$$\langle \hat{\boldsymbol{\mu}}_{\mathbb{P}_x}, \hat{\boldsymbol{\mu}}_{\mathbb{P}_z} \rangle = \tilde{k}(\hat{\boldsymbol{\mu}}_{\mathbb{P}_x}, \hat{\boldsymbol{\mu}}_{\mathbb{P}_z}) = \frac{1}{n_x \times n_z} \sum_{i=1}^{n_x} \sum_{j=1}^{n_z} k(\mathbf{x}_i, \mathbf{z}_j)$$

Datasets	# Segments	# Entries
Skoda	1,447	68.8
WISDM	389	705.8
HCI	264	602.6
PS	1,614	4.0

Random Fourier Features (RFF)

Intuition:

$$k(\mathbf{x}, \mathbf{x}') = \langle \phi(\mathbf{x}), \phi(\mathbf{x}') \rangle \approx \mathbf{z}(\mathbf{x})^{\top} \mathbf{z}(\mathbf{x}')$$

Theorem (Bochner's Theorem [2])

A continuous, shift-invariant kernel k is positive definite if and only if there is a finite non-negative measure $\mathbb{P}(\omega)$ on \mathbb{R}^d , such that $k(\mathbf{x} - \mathbf{x}') = \int_{\mathbb{R}^d} e^{i\omega^\top (\mathbf{x} - \mathbf{x}')} d\mathbb{P}(\omega) =$ $\int_{\mathbb{R}^d \times [0,2\pi]} 2\cos(\omega^\top \mathbf{x} + b)\cos(\omega^\top \mathbf{x}' + b)d(\mathbb{P}(\omega) \times \mathbb{P}(b)) =$ $\int_{\mathbb{R}^d} 2(\cos(\omega^\top \mathbf{x})\cos(\omega^\top \mathbf{x}') + \sin(\omega^\top \mathbf{x})\sin(\omega^\top \mathbf{x}'))d\mathbb{P}(\omega)$, where $\mathbb{P}(b)$ is a uniform distribution on $[0, 2\pi]$.

RFF:

$$z_w(\mathbf{x}) = \sqrt{2}cos(w^{\top}\mathbf{x} + b)$$

$$k(\mathbf{x}, \mathbf{x}') = \mathbb{E}(z_w(\mathbf{x})^{\top}z_w(\mathbf{x}'))$$

SMM_{AR} VS R-SMM_{AR}

$$\mu[X] = \frac{1}{m} \sum_{i=1}^{m} k(\cdot, x_i)$$

$$\min_{f} \frac{1}{n} \sum_{i=1}^{n} \ell(f(\boldsymbol{\mu}_{i}), \boldsymbol{y}_{i}) + \lambda \|f\|_{\tilde{\mathcal{H}}}$$

$$\boldsymbol{\mu}_i = \frac{1}{m} \sum_{i=1}^m \mathbf{z}(\mathbf{x}_i)$$

$$\min_{\mathbf{w}\in\mathbb{R}^{\tilde{D}}}\frac{1}{n}\sum_{i=1}^{n}\ell(\mathbf{w}^{\top}\tilde{\mathbf{z}}(\boldsymbol{\mu}_{i}),\boldsymbol{y}_{i})+\lambda\|\mathbf{w}\|_{2}^{2}$$

$$f = \sum_{i=1}^{n} \alpha_i \boldsymbol{\mu}_i$$

$$f(\boldsymbol{\mu}_i) = \mathbf{w}^\top \boldsymbol{\mu}_i$$

$$f = \sum_{i=1}^{n} \alpha_i \psi(\boldsymbol{\mu}_i)$$

$$f(\boldsymbol{\mu}_i) = \mathbf{w}^{\top} \tilde{\mathbf{z}}(\boldsymbol{\mu}_i)$$

16/23

Experimental Setup

Datasets statistics

Datasets	# Seg.	# En.	# Fea.	# C.	f	# Sub.
Skoda	1,447	68.8	60	10	14	1
WISDM	389	705.8	6	6	20	36
HCI	264	602.6	48	5	96	1
PS	1,614	4.0	9	6	50	4

Baseline methods

Category	Methods	
Frame based	SVM-f	
Fiame-Daseu	kNN-f	
	Moment-x	
Segment based	ECDF-d	
Segment-based	SAX-a	
	miFV	

Experimental Results

	HCI		PS		
Methods	miF	maF	miF	maF	
SMM _{AR}	100±0	100±0	96.74±1.20	96.72±1.22	
Moment-1	91.35±2.28	91.32±2.33	93.90±.94	93.85±.93	
Moment-2	96.47±.79	96.47±.77	95.95±.86	$95.94 \pm .86$	
Moment-5	97.76±.79	97.77±.78	93.31±.99	93.42±.93	
Moment-10	98.72±.79	98.72±.79	91.93±1.44	92.00±1.36	
ECDF-15	100±0	100±0	93.97±.96	94.04±.97	
ECDF-30	100±0	100±0	90.82±.53	91.05±.57	
ECDF-45	100±0	100±0	87.15±1.32	87.23±1.59	
SAX-3	21.15±0	7.39±0	50.28±2.40	41.30±3.89	
SAX-6	21.15±0	7.39±0	52.95±2.54	46.86±.68	
SAX-10	21.15±0	7.39±0	52.81±1.08	44.60±1.52	
miFV	21.64±1.58	18.78±2.24	15.32±4.28	7.65±5.83	
SVM-f	99.52±.53	99.52±.53	95.22±1.10	95.21±1.10	
kNN_f	99.04 ± 1.22	99.05±1.21	94.73±.65	94.72±.65	
KININ-I					
	Sko	da	WIS	SDM	
Methods	miF	da maF	WIS miF	SDM maF	
Methods SMM _{AR}	Sko miF 99.61±.24	da maF 99.60±.25	WIS miF 55.87±2.66	SDM maF 56.09±3.03	
Methods SMM _{AR} Moment-1	Sko miF 99.61±.24 92.46±1.97	da maF 99.60±.25 92.39±2.01	WIS miF 55.87±2.66 38.30±4.10	SDM maF 56.09±3.03 44.63±12.22	
Methods SMM _{AR} Moment-1 Moment-2	miF 99.61±.24 92.46±1.97 92.27±1.47	da maF 99.60±.25 92.39±2.01 92.14±1.49	WIS miF 55.87±2.66 38.30±4.10 52.55±1.46	50M maF 56.09±3.03 44.63±12.22 57.21±7.22	
Methods SMM _{AR} Moment-1 Moment-2 Moment-5	miF 99.61±.24 92.46±1.97 92.27±1.47 94.49±1.66	da maF 99.60±.25 92.39±2.01 92.14±1.49 94.45±1.70	WIS miF 55.87±2.66 38.30±4.10 52.55±1.46 57.31±5.91	5DM maF 56.09±3.03 44.63±12.22 57.21±7.22 62.52±9.81	
Methods SMM _{AR} Moment-1 Moment-2 Moment-5 Moment-10	miF 99.61±.24 92.46±1.97 92.27±1.47 94.49±1.66 95.24±.63	$\begin{array}{c} \text{da} \\ \text{maF} \\ \hline \textbf{99.60} \pm .25 \\ \textbf{92.39} \pm 2.01 \\ \textbf{92.14} \pm 1.49 \\ \textbf{94.45} \pm 1.70 \\ \textbf{95.23} \pm .64 \end{array}$	WIS miF 55.87±2.66 38.30±4.10 52.55±1.46 57.31±5.91 57.79±3.97	5DM maF 56.09±3.03 44.63±12.22 57.21±7.22 62.52±9.81 62.44±8.02	
Methods SMM _{AR} Moment-1 Moment-2 Moment-5 Moment-10 ECDF-15	Sko miF 99.61±.24 92.46±1.97 92.27±1.47 94.49±1.66 95.24±.63 93.62±1.34	$\begin{array}{c} \text{da} \\ \text{maF} \\ \hline \textbf{99.60} \pm .25 \\ 92.39 \pm 2.01 \\ 92.14 \pm 1.49 \\ 94.45 \pm 1.70 \\ 95.23 \pm .64 \\ \hline \textbf{93.60} \pm 1.36 \end{array}$	WIS miF 55.87 ± 2.66 38.30 ± 4.10 52.55 ± 1.46 57.31 ± 5.91 57.79 ± 3.97 54.01 ± 3.09	SDM maF 56.09±3.03 44.63±12.22 57.21±7.22 62.52±9.81 62.44±8.02 57.47±7.65	
Methods SMM _{AR} Moment-1 Moment-5 Moment-10 ECDF-15 ECDF-30	miF 99.61±.24 92.46±1.97 92.27±1.47 94.49±1.66 95.24±.63 93.62±1.34 93.25±1.11	$\begin{array}{c} \text{da} \\ \text{maF} \\ \hline \textbf{99.60} \pm .\textbf{25} \\ \textbf{92.39} \pm 2.01 \\ \textbf{92.14} \pm 1.49 \\ \textbf{94.45} \pm 1.70 \\ \textbf{95.23} \pm .64 \\ \textbf{93.60} \pm 1.36 \\ \textbf{93.21} \pm 1.15 \end{array}$	WIS miF 55.87±2.66 38.30±4.10 52.55±1.46 57.31±5.91 57.79±3.97 54.01±3.09 55.33±4.50	DM maF 56.09±3.03 44.63±12.22 57.21±7.22 62.52±9.81 62.44±8.02 57.47±7.65 58.26±7.13	
Methods SMM _{AR} Moment-1 Moment-2 Moment-5 Moment-10 ECDF-15 ECDF-30 ECDF-45	Sko miF 99.61±.24 92.46±1.97 92.27±1.47 94.49±1.66 95.24±.63 93.62±1.34 93.25±1.11 92.20±1.07	$\begin{array}{c} \text{da} \\ \text{maF} \\ \textbf{99.60} \pm \textbf{25} \\ \textbf{92.39} \pm 2.01 \\ \textbf{92.14} \pm 1.49 \\ \textbf{94.45} \pm 1.70 \\ \textbf{95.23} \pm .64 \\ \textbf{93.60} \pm 1.36 \\ \textbf{93.21} \pm 1.15 \\ \textbf{92.20} \pm 1.13 \end{array}$	WIS miF 55.87±2.66 38.30±4.10 52.55±1.46 57.31±5.91 57.79±3.97 54.01±3.09 55.33±4.50 53.46±2.84	SDM maF 56.09±3.03 44.63±12.22 57.21±7.22 62.52±9.81 62.44±8.02 57.47±7.65 58.26±7.13 57.77±7.02	
Methods SMM _{AR} Moment-1 Moment-5 Moment-10 ECDF-15 ECDF-30 ECDF-45 SAX-3	Sko miF 99.61±.24 92.27±1.47 94.49±1.66 95.24±.63 93.62±1.34 93.62±1.11 92.25±1.11 92.25±1.17 94.59±1.07 94.59±1.07	da maF 99.60±.25 92.39±2.01 92.14±1.49 94.45±1.70 95.23±.64 93.60±1.36 93.21±1.15 92.20±1.13 94.48±1.21	WIS miF 55.87±2.66 38.30±4.10 52.55±1.46 57.31±5.91 57.79±3.97 54.01±3.09 53.36±2.84 32.90±1.47	SDM maF 56.09±3.03 44.63±12.22 57.21±7.22 62.52±9.81 62.44±8.02 57.47±7.65 58.26±7.13 57.77±7.02 23.62±1.81	
Methods SMM _{AR} Moment-1 Moment-2 Moment-2 Moment-10 ECDF-15 ECDF-30 ECDF-45 SAX-3 SAX-6	Sko 99.61±.24 92.46±1.97 92.27±1.47 94.49±1.66 93.62±1.34 93.62±1.34 93.25±1.11 92.20±1.07 94.54±1.28 96.13±1.57	$\begin{array}{c} \text{da} \\ \text{maF} \\ \hline 99.60\pm.25 \\ 92.39\pm2.01 \\ 92.14\pm1.49 \\ 94.45\pm1.70 \\ 95.23\pm.64 \\ 93.60\pm1.36 \\ 93.21\pm1.15 \\ 92.20\pm1.13 \\ 94.48\pm1.21 \\ 96.10\pm1.55 \end{array}$	WIS miF 55.87±2.66 38.30±4.10 52.55±1.46 57.31±5.91 57.79±3.97 54.01±3.09 55.33±4.50 53.46±2.84 32.90±1.47 35.49±3.11	SDM maF 56.09±3.03 44.63±12.22 57.21±7.22 62.52±9.81 62.44±8.02 57.47±7.65 58.26±7.13 57.77±7.02 23.62±1.81 28.77±2.82	
Methods SMM _{AR} Moment-1 Moment-2 Moment-5 Moment-10 ECDF-15 ECDF-30 ECDF-30 ECDF-45 SAX-3 SAX-6 SAX-10	Sko miF Sko 99.61±.24 92.46±1.97 92.27±1.47 94.49±1.66 95.24±.63 93.62±1.34 93.25±1.11 92.20±1.07 94.54±1.28 96.13±1.57 96.12±.84 96.22±.84	$\begin{array}{c} \text{da} \\ \text{maF} \\ \textbf{99.60} \pm \textbf{25} \\ \textbf{92.39} \pm 2.01 \\ \textbf{92.14} \pm 1.49 \\ \textbf{94.45} \pm 1.70 \\ \textbf{95.23} \pm .64 \\ \textbf{93.60} \pm 1.36 \\ \textbf{93.21} \pm 1.15 \\ \textbf{92.20} \pm 1.13 \\ \textbf{94.48} \pm 1.21 \\ \textbf{96.10} \pm 1.55 \\ \textbf{96.18} \pm .83 \end{array}$	WIS miF 55.87±2.66 38.30±4.10 52.55±1.46 57.31±5.91 57.79±3.97 54.01±3.09 55.33±4.50 53.46±2.84 32.90±1.47 35.49±3.11 32.57±1.48	SDM maF 56.09±3.03 44.63±12.22 57.21±7.22 62.52±9.81 62.44±8.02 57.47±7.65 58.26±7.13 57.77±7.02 23.62±1.81 28.77±2.82 26.89±2.39	
Methods SMM _{AR} Moment-1 Moment-2 Moment-5 Moment-10 ECDF-15 ECDF-30 ECDF-45 SAX-3 SAX-6 SAX-6 SAX-10 miFV	Sko miF 99.46±1.97 92.46±1.97 92.27±1.47 94.49±1.66 93.62±1.34 93.25±1.11 92.20±1.07 94.54±1.28 96.13±1.57 96.22±.84 61.40±3.24	$\begin{array}{c} \text{da} \\ \text{maF} \\ \hline \textbf{99.60} \pm .25 \\ 92.39 \pm 2.01 \\ 92.14 \pm 1.49 \\ 94.45 \pm 1.70 \\ 95.23 \pm .64 \\ 93.60 \pm 1.36 \\ 93.21 \pm 1.15 \\ 92.20 \pm 1.13 \\ 94.48 \pm 1.21 \\ 96.10 \pm 1.55 \\ 96.18 \pm .83 \\ 53.63 \pm 2.50 \end{array}$	WIS miF 55.87±2.66 38.30±4.10 52.55±1.46 57.31±5.91 57.79±3.97 54.01±3.09 53.46±2.84 32.90±1.47 35.49±3.11 32.57±1.48 14.61±2.04	SDM maF 56.09±3.03 44.63±12.22 57.21±7.22 62.52±9.81 62.44±8.02 57.47±7.65 58.26±7.13 57.77±7.02 23.62±1.81 28.77±2.82 26.89±2.39 4.72±2.13	
Methods SMM _{AR} Moment-1 Moment-2 Moment-2 Moment-2 Moment-10 ECDF-15 ECDF-30 ECDF-45 SAX-6 SAX-10 SVM-f	Sko 99.61±.24 92.46±1.97 92.27±1.47 94.49±1.66 93.62±1.34 93.25±1.11 92.20±1.07 94.54±1.28 96.13±1.57 96.22±.84 61.40±3.24 93.46±1.20	$\begin{array}{c} \text{da} \\ \text{maF} \\ \textbf{99.60} \pm .25 \\ \textbf{92.39} \pm 2.01 \\ \textbf{92.14} \pm 1.49 \\ \textbf{94.45} \pm 1.70 \\ \textbf{95.23} \pm .64 \\ \textbf{93.60} \pm 1.36 \\ \textbf{93.21} \pm 1.15 \\ \textbf{92.20} \pm 1.13 \\ \textbf{94.48} \pm 1.21 \\ \textbf{96.10} \pm 1.55 \\ \textbf{96.18} \pm .83 \\ \textbf{53.63} \pm 2.50 \\ \textbf{92.65} \pm 1.38 \end{array}$	WIS miF 55.87±2.66 38.30±4.10 52.55±1.46 57.31±5.97 54.01±3.09 55.33±4.50 53.46±2.84 32.90±1.47 35.49±3.11 32.57±1.48 14.61±2.04 27.49±2.71	SDM maF 56.09±3.03 44.63±12.22 57.21±7.22 62.52±9.81 62.44±8.02 57.47±7.65 58.26±7.13 57.77±7.02 23.62±1.81 28.77±2.82 26.89±2.39 4.72±2.13 18.70±2.88	

Impact on Orders of Moments

Experimental Results

We propose two novel methods for HAR:

- SMM_{AR}: a novel feature extraction approach for activity recognition
 - input data in matrix form
 - retain all the statistics in the data
- R-SMM_{AR}: an accelerated version of SMM_{AR}
 - an accelerated approach for SMMAR
 - comparable performance
 - solution for large-scale problems

More info in http://hangwei12358.github.io/

- Ali Rahimi and Benjamin Recht. "Random Features for Large-Scale Kernel Machines". In: NIPS. 2007, pp. 1177–1184.
- Walter Rudin. *Fourier analysis on groups*. Courier Dover Publications, 2017.
- Alex Smola et al. "A Hilbert space embedding for distributions". In: International Conference on Algorithmic Learning Theory. Springer. 2007, pp. 13–31.