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@ Problem Overview
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Human Activity Recognition

Tremendous applications:
@ elderly assistant
@ healthcare
@ fitness coaching
@ smart building
@ gaming
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Human Activity Recognition

A multi-class classification problem
@ Input: wearable onbody sensor data
@ Output: activity labels
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Problem Overview
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Two key prerequisites:
@ expressive feature extraction — discriminate activities
@ sufficient labeled training data — build a precise model

Sufficient labeled
traiging data
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Two key prerequisites:

@ expressive feature extraction — discriminate activities —
dependent on domain knowledge

@ sufficient labeled training data — build a precise model —
require a huge amount of human annotation effort
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@ Can we extract as many discriminative features as
possible, in an automatic fashion?
— kernel mean embedding of distributions, with NO
information loss
— novel supervised methods SMM,z and R-SMM 45 [7]'
© Can we utilize labeled data as few as possible to
alleviate human annotation effort?
— Distribution-based Semi-Supervised Learning (DSSL)

"Hangwei Qian, Sinno Jialin Pan, and Chunyan Miao. Sensor-based
activity recognition via learning from distributions. In AAAI'18 (oral).
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Existing Feature Extraction Methods

Frame-level — vectorial-based
@ Manual feature engineering, statistics of each frame

time_1 time_2 time_3 time_4 time_5
feature_1 0.9134 0.2785 0.9649 0.9572 0.8147
feature_2 0.9058 0.6324 0.5469 0.1576 0.4854
feature_3 0.127 0.0975 0.9575 0.9706 0.8003
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Existing Feature Extraction Methods

Frame-level — vectorial-based
@ Manual feature engineering, statistics of each frame
Segment-level — matrix-based

@ Statistical, i.e., moments of each segment
@ Structural

e The ECDF method [4]

e The SAX method [3, 6]

cumulative distribution function

& 04

P(X=x;)

\e c ¢

)m =

N, o

=

80 100 120

6/23



Existing Semi-Supervised Methods

@ LapSVM [1]: manifold learning
@ VTSVM [2]: transductive

@ SSKLR [5]: kernel logistic regression with
Expectation-Maximization algorithm

@ GLSVM [8]: multi-graph based
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9 Kernel Mean Embeddings for Feature Extraction
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Intuition of Kernel Mean Embedding

ssssss

(E[x]) as features

" problem: many distributions have

the same mean!
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Intuition of Kernel Mean Embedding

(E[x]) as features

problem: many distributions have
the same mean!

<I[§t[;2]]> as features

problem: many distributions have
the same mean and variance!
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Intuition of Kernel Mean Embedding

(E[x]) as features

problem: many distributions have
the same mean!

<I§[)f2]]) as features

problem: many distributions have
the same mean and variance!

E[x]
(E[XZ]) as features

E[x3]

problem: many distributions still
have the same first 3 moments!
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Intuition of Kernel Mean Embedding

E[x]
E[x?]
ulPx] = | E[x%]

The infinite dimensional
features should be able to
| discriminate different distributions!
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Kernel Mean Embedding of Distributions

aom Figure 1:

e llustrations of kernel

y /i: .\ mean embeddings
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— =2 __’  empirical examples

n[Px] = Ex[k(-,x)] € H (1)
1 m

piXI= > k(x) eH (2)

Here X = {x1,..., Xm} L Py, H is the RKHS associated with k.
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e The Proposed DSSL for Semi-Supervised Learning
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Contribution

DSSL: Distribution-based Semi-Supervised Learning
@ All orders of statistical moments features are extracted
implicitly and automatically

© DSSL relaxes SMM4g's full supervision assumption, and
exploit unlabeled instances to learn an underlying data
structure

© DSSL is the first attempt on semi-supervised learning with
distributions, with rigorous theoretical proofs provided.

© Extensive experiments to show the efficacy of DSSL.
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Intuition of DSSL

@ Label annotation is time-consuming
@ Unlabeled data is abundant and informative
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Intuition of DSSL

@ Label annotation is time-consuming
@ Unlabeled data is abundant and informative

what if unlabeled data is available?
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Intuition of DSSL

Intuition: unlabeled data sheds light on the underlying
manifolds of data space
Difficulty:

@ Classical setting: x € R”

@ Our setting: p[X] € H
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Distribution-based SSL: Main idea

@ map the activity segments into a RKHS — sufficient
features
© wrap the RKHS space to reflect the manifold of the data —
modify the similarity measure (f, g) £ (f,9)g + F(f,9)
e data within a manifold (instead of closer Euclidean

distance)— more similar
e data with different labels — less similar
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Challenges

(f.g)y = (£.9)5 + F(f.q) (3)

f* = argmin }Z (el v ) + 13 (@)

@ How to construct the data-dependent kernel by
incorporating unlabeled training data?

© Is the new space valid? Since a RKHS is defined by inner
product.

© How to calculate the loss function given two items are not
in the same space?
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Challenge 1/3 Construction of kernel

(f, @)y = (.95 + (ST, Sg)v, (5)
where S is a bounded linear operator.
Denote f(u) = (f(up,), ..., f(1p,)),

(St Sf)y = H(u)Mi()T (6)

In our case, M = rlL2, where L is the Laplacian matrix
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Challenge 2/3 Validity of the new space

H is a valid RKHS.
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Challenge 3/3 Loss function calculation

/

. .

o= argmin 5 > el vis ) + 1115 )
i=1

Proposition 1
H="H.

K=(+KM K,
where K with K = k(p,, pip,) is the kernel matrix for 71 on
pp,’s, and K is the kernel matrix in the altered space H.
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e Experiments
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Experimental Setup

@ labeled training set, unlabeled training set and test set:
0.02:0.1:0.88

@ evaluation: micro-F1 (miF), macro-F1 (maF)

Table 1: Statistics of datasets used in experiments.

Datasets | # Sample | # Instances per sample | # Feature | # Class
Skoda 1,447 68 60 10

HCI 264 602 48 5
WISDM 389 705 6 6
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Experimental Results

Table 2: Experimental results on 3 activity datasets (unit: %).

Methods Skoda HCI WISDM

miF maF miF maF miF maF
SVMs 85.7+1.8 425+0.9 | 69.749.6 69.6+9.4 | 41.5452 39.6+6.8
SAX_3 39.6+6.3 18.742.9 | 36.0+3.0 34.7+25 | 34.6+1.4 30.6+1.2
SAX 6 37.2+6.1 18.6+2.8 | 39.7+7.3 38.4+7.9 |34.9+3.0 30.54+5.0
SAX9 40.3+6.5 19.943.2[39.8+8.7 37.049.2 | 33.6+2.9 28.8+5.8
ECDF5 |84.2+2.1 41.6+1.0 | 67.7+10.1 67.64+9.1 421+6.3  40.5+7.7
ECDF_15 [ 79.841.5 39.2+0.7 | 68.4+10.4 68.51+9.6 [39.4433 36.2+5.7
ECDF30 | 72.6+1.2 35.4+0.3 | 68.6+11.1 68.7+10.5 | 37.7+25 32.6+4.9
ECDF 45 [ 657425 31.5+1.3|68.6+11.4 68.6+10.8 [ 36.4+1.4 31.3+3.6
LapSVM | 89.7+2.1 446+1.2 | 76.1+4.8 76.3+4.7 | 40.1+3.8 34.543.5
vTSVM | 859+27 84.8+28 | 754+115 755+11.2|41.3+56 39.4+6.9
SSKLR 25.4+19.3 121+25 | 24.2+17.2 18.1£10.1 | 24.6+17.0 17.3+9.9
GLSVM 89.7+2.1 445+1.2 | 75.7+5.8 75.745.7 | 40.4+3.8 33.9+4.0
Distribution-based supervised SMMus | 93.240.9 93.1+1.0 | 82.24+13.4 78.9+18.4 | 20.543.3 11.743.9
Distribution-based semi-supervised | DSSL 98.8+0.5 98.8+0.5 | 99.94+0.2 99.94+0.2 | 56.5+5.1 55.6+5.0

Vectorial-based supervised

Vectorial-based semi-supervised
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Experiments Analysis (1/3)

Varying ratios of labeled data
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Experiments Analysis (2/3)

Varying ratios of unlabeled data
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Experiments Analysis (3/3)

Impact of parameter r to the performance
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e Conclusion
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Conclusion

We propose a novel method, i.e., Distribution-based
Semi-Supervised Learning (DSSL) for human activity
recognition

@ All orders of statistical moments features are extracted
implicitly and automatically

© DSSL relaxes SMM4g's full supervision assumption, and
exploit unlabeled instances to learn an underlying data
structure

© DSSL is the first attempt on semi-supervised learning with
distributions, with rigorous theoretical proofs provided.

© Extensive experiments to show the efficacy of DSSL.
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Questions?

et}

# i e

More info in hitp://hangwei12358.github.io
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http://hangwei12358.github.io/
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Kernel Mean Embeddings of Distributions

N AN Figure 2: lllustration
R ) \ of the kernel mean
/ AN o ! embedding of two
a ;b \ different distributions
\ { /o

Injectivity[smola2007hilbert]

A universal kernel k can promise an injective mean map
w: Py — u[Px].
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SMM 4z Framework

. ) - . 1 Ny Nz
<l'l’]P’X7/J‘]P’z> = k(IJ‘PXau]P’z) = N, x n sz(xivzj)v (8)
X2 i=1 =1
R(pra pp,) = (U(pp,), ¥(1e,)) 9)
TANPANNA /_\/\:_ i —
AN ANANAAN [ o r. ;)
‘,\ o u" = o } {/ 5 5 :\
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Problem Formulation of SMMag

@ Training set: {(P;,yi)},i€ {1,...,N},xi ~ P, x; =
{X,'1 s ey X,'ml.}, Vi € {1 ) eens L}

@ Multi-class classifier — C? binary classifiers
f.y =Ho(ux)) + b

@ Primal Optimization problem:

N
1
argmin||f[l5, + C» &
f.b i=1

s.t.yi = f(¢(ux)) + b (10)
yif(e(pi)) > 1 =&, Vi
& >0,Vi
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