Distribution-based Semi-Supervised Learning for Activity Recognition (AAAI'19)

Hangwei Qian, Sinno Jialin Pan, Chunyan Miao

Nanyang Technological University, Singapore

January 30, 2019

Problem Overview

Outline

- 2 Kernel Mean Embeddings for Feature Extraction
- 3 The Proposed DSSL for Semi-Supervised Learning

4 Experiments

5 Conclusion

Human Activity Recognition

Tremendous applications:

- elderly assistant
- healthcare
- fitness coaching
- smart building
- gaming

Human Activity Recognition

A multi-class classification problem

- Input: wearable onbody sensor data
- Output: activity labels

SUBVELLIANCE &

Problem Overview

Two key prerequisites:

- **(**) expressive feature extraction \rightarrow discriminate activities
- 2 sufficient labeled training data \rightarrow build a precise model

Problem Overview

Two key prerequisites:

- expressive feature extraction → discriminate activities → dependent on domain knowledge
- Sufficient labeled training data \rightarrow build a precise model \rightarrow require a huge amount of human annotation effort

Motivation

Can we extract as many discriminative features as possible, in an automatic fashion?

 \rightarrow kernel mean embedding of distributions, with NO information loss

 \rightarrow novel supervised methods SMM_{AR} and R-SMM_{AR} [7]¹

Can we utilize labeled data as few as possible to alleviate human annotation effort?

 \rightarrow Distribution-based Semi-Supervised Learning (DSSL)

¹Hangwei Qian, Sinno Jialin Pan, and Chunyan Miao. **Sensor-based** activity recognition via learning from distributions. In AAAI'18 (oral).

Existing Feature Extraction Methods

$\text{Frame-level} \rightarrow \text{vectorial-based}$

• Manual feature engineering, statistics of each frame

_	cinic_r	time_3	time_4	time_5
0.9134	0.2785	0.9649	0.9572	0.8147
0.9058	0.6324	0.5469	0.1576	0.4854
0.127	0.0975	0.9575	0.9706	0.8003
	0.9134 0.9058 0.127	0.9134 0.2785 0.9058 0.6324 0.127 0.0975	0.9134 0.2785 0.9649 0.9058 0.6324 0.5469 0.127 0.0975 0.9575	0.9134 0.2785 0.9649 0.9572 0.9058 0.6324 0.5469 0.1576 0.127 0.0975 0.9575 0.9706

Existing Feature Extraction Methods

 $\textbf{Frame-level} \rightarrow \textbf{vectorial-based}$

• Manual feature engineering, statistics of each frame

 $\text{Segment-level} \rightarrow \text{matrix-based}$

- Statistical, i.e., moments of each segment
- Structural
 - The ECDF method [4]
 - The SAX method [3, 6]

Existing Semi-Supervised Methods

- LapSVM [1]: manifold learning
- \(\to TSVM [2]: transductive)
- SSKLR [5]: kernel logistic regression with Expectation-Maximization algorithm
- GLSVM [8]: multi-graph based

Problem Overview

Outline

2 Kernel Mean Embeddings for Feature Extraction

3 The Proposed DSSL for Semi-Supervised Learning

4 Experiments

5 Conclusion

Intuition of Kernel Mean Embedding

 $(\mathbb{E}[x])$ as features

problem: many distributions have the same mean!

Intuition of Kernel Mean Embedding

 $(\mathbb{E}[x])$ as features

problem: many distributions have the same mean!

 $\mathbb{E}[x] \\ \mathbb{E}[x^2]$ as features

problem: many distributions have the same mean and variance!

Intuition of Kernel Mean Embedding

 $(\mathbb{E}[x])$ as features

problem: many distributions have the same mean!

$${\mathbb E}[x] \ {\mathbb E}[x^2]$$
 as features

problem: many distributions have the same mean and variance!

problem: many distributions still have the same first 3 moments!

Intuition of Kernel Mean Embedding

$$\mu[\boldsymbol{P}_{\boldsymbol{X}}] = \begin{pmatrix} \mathbb{E}[\boldsymbol{X}] \\ \mathbb{E}[\boldsymbol{X}^2] \\ \mathbb{E}[\boldsymbol{X}^3] \\ \dots \\ \dots \end{pmatrix}$$

The **infinite dimensional features** should be able to discriminate different distributions!

Kernel Mean Embedding of Distributions

Figure 1:

Illustrations of kernel mean embeddings of a distribution and embeddings of empirical examples

$$\mu[P_x] = E_x[k(\cdot, x)] \in \mathcal{H}$$
(1)

$$\mu[X] = \frac{1}{m} \sum_{i=1}^{m} k(\cdot, x_i) \in \mathcal{H}$$
(2)

Here $X = \{x_1, ..., x_m\} \stackrel{i.i.d.}{\sim} P_x$, \mathcal{H} is the RKHS associated with k.

Outline

1 Problem Overview

2 Kernel Mean Embeddings for Feature Extraction

The Proposed DSSL for Semi-Supervised Learning

4 Experiments

5 Conclusion

Contribution

DSSL: Distribution-based Semi-Supervised Learning

- All orders of statistical moments features are extracted implicitly and automatically
- OSSL relaxes SMM_{AR}'s full supervision assumption, and exploit unlabeled instances to learn an underlying data structure
- OSSL is the first attempt on semi-supervised learning with distributions, with rigorous theoretical proofs provided.
- Extensive experiments to show the efficacy of DSSL.

Intuition of DSSL

- Label annotation is time-consuming
- Unlabeled data is abundant and informative

Intuition of DSSL

- Label annotation is time-consuming
- Unlabeled data is abundant and informative

what if unlabeled data is available?

Intuition of DSSL

Intuition: unlabeled data sheds light on the underlying manifolds of data space Difficulty:

- Classical setting: $x \in \mathbb{R}^n$
- Our setting: $\mu[X] \in \mathcal{H}$

Distribution-based SSL: Main idea

- map the activity segments into a RKHS → sufficient features
- ② wrap the RKHS space to reflect the manifold of the data → modify the similarity measure $\langle f, g \rangle_{\check{\mathcal{H}}} \triangleq \langle f, g \rangle_{\check{\mathcal{H}}} + F(f, g)$
 - data within a manifold (instead of closer Euclidean distance)→ more similar
 - $\bullet\,$ data with different labels $\rightarrow\,$ less similar

Challenges

$$\langle f, g \rangle_{\check{\mathcal{H}}} \stackrel{\Delta}{=} \langle f, g \rangle_{\check{\mathcal{H}}} + F(f, g)$$
 (3)

$$f^* = \arg\min_{f\in\breve{\mathcal{H}}} \frac{1}{I} \sum_{i=1}^{I} \ell([\boldsymbol{\mu}_{\mathbb{P}_i}]_{\breve{\mathcal{H}}}, \boldsymbol{y}_i, [f]_{\breve{\mathcal{H}}}) + \|f\|_{\breve{\mathcal{H}}}^2,$$
(4)

- How to construct the data-dependent kernel by incorporating unlabeled training data?
- Is the new space valid? Since a RKHS is defined by inner product.
- How to calculate the loss function given two items are not in the same space?

Challenge 1/3 Construction of kernel

$$\langle f, g \rangle_{\tilde{\mathcal{H}}} \stackrel{\Delta}{=} \langle f, g \rangle_{\tilde{\mathcal{H}}} + \langle Sf, Sg \rangle_{\mathcal{V}},$$
 (5)

where *S* is a bounded linear operator. Denote $\mathbf{f}(\mu) = (f(\mu_{\mathbb{P}_1}), ..., f(\mu_{\mathbb{P}_n})),$

$$\langle Sf, Sf \rangle_{\mathcal{V}} = \mathbf{f}(\boldsymbol{\mu}) M \mathbf{f}(\boldsymbol{\mu})^{\top}$$
 (6)

In our case, $M = rL^2$, where L is the Laplacian matrix

Challenge 2/3 Validity of the new space

Theorem 1

 $\check{\mathcal{H}}$ is a valid RKHS.

Challenge 3/3 Loss function calculation

$$f^* = \arg\min_{f\in\breve{\mathcal{H}}} \frac{1}{I} \sum_{i=1}^{I} \ell([\boldsymbol{\mu}_{\mathbb{P}_i}]_{\tilde{\mathcal{H}}}, \boldsymbol{y}_i, [f]_{\breve{\mathcal{H}}}) + \|f\|_{\breve{\mathcal{H}}}^2, \tag{7}$$

Proposition 1

 $\breve{\mathcal{H}}=\tilde{\mathcal{H}}.$

Proposition 2

$$\breve{K} = (I + \tilde{K}M)^{-1}\tilde{K},$$

where \tilde{K} with $\tilde{K}_{ij} = \tilde{k}(\mu_{\mathbb{P}_i}, \mu_{\mathbb{P}_j})$ is the kernel matrix for $\tilde{\mathcal{H}}$ on $\mu_{\mathbb{P}_i}$'s, and \check{K} is the kernel matrix in the altered space $\check{\mathcal{H}}$.

Outline

1 Problem Overview

2 Kernel Mean Embeddings for Feature Extraction

The Proposed DSSL for Semi-Supervised Learning

Experiments

5 Conclusion

Experimental Setup

- labeled training set, unlabeled training set and test set: 0.02:0.1:0.88
- evaluation: micro-F1 (miF), macro-F1 (maF)

Table 1: Statistics of datasets used in experiments.

Datasets	# Sample	# Instances per sample	# Feature	# Class
Skoda	1,447	68	60	10
HCI	264	602	48	5
WISDM	389	705	6	6

Experimental Results

Table 2: Experimental results on 3 activity datasets (unit: %).

Methods		Skoda		HCI		WISDM	
		miF	maF	miF	maF	miF	maF
Vectorial-based supervised	SVMs	85.7±1.8	42.5±0.9	69.7±9.6	69.6±9.4	41.5±5.2	39.6±6.8
	SAX_3	39.6±6.3	18.7±2.9	36.0±3.0	34.7±2.5	34.6±1.4	30.6±1.2
	SAX_6	37.2±6.1	18.6±2.8	39.7±7.3	38.4±7.9	34.9±3.0	30.5±5.0
	SAX_9	40.3±6.5	19.9±3.2	39.8±8.7	37.0±9.2	33.6±2.9	28.8±5.8
	ECDF_5	84.2±2.1	41.6±1.0	67.7±10.1	67.6±9.1	42.1±6.3	40.5±7.7
	ECDF_15	79.8±1.5	39.2±0.7	68.4±10.4	68.5±9.6	39.4±3.3	36.2±5.7
	ECDF_30	72.6±1.2	35.4±0.3	68.6±11.1	68.7±10.5	37.7±2.5	32.6±4.9
	ECDF_45	65.7±2.5	31.5±1.3	68.6±11.4	68.6±10.8	36.4±1.4	31.3±3.6
Vectorial-based semi-supervised	LapSVM	89.7±2.1	44.6±1.2	76.1±4.8	76.3±4.7	40.1±3.8	34.5±3.5
	⊽TSVM	85.9±2.7	84.8±2.8	75.4±11.5	75.5±11.2	41.3±5.6	39.4±6.9
	SSKLR	25.4±19.3	12.1±2.5	24.2±17.2	18.1±10.1	24.6±17.0	17.3±9.9
	GLSVM	89.7±2.1	44.5±1.2	75.7±5.8	75.7±5.7	40.4±3.8	33.9±4.0
Distribution-based supervised	SMM _{AR}	93.2±0.9	93.1±1.0	82.2±13.4	78.9±18.4	20.5±3.3	11.7±3.9
Distribution-based semi-supervised	DSSL	98.8±0.5	98.8±0.5	99.9±0.2	99.9±0.2	56.5±5.1	55.6±5.0

Experiments Analysis (1/3)

Varying ratios of labeled data

Experiments Analysis (2/3)

Varying ratios of unlabeled data

Experiments Analysis (3/3)

Impact of parameter r to the performance

Outline

Problem Overview

- 2 Kernel Mean Embeddings for Feature Extraction
- The Proposed DSSL for Semi-Supervised Learning

4 Experiments

Conclusion

We propose a novel method, i.e., Distribution-based Semi-Supervised Learning (DSSL) for human activity recognition

- All orders of statistical moments features are extracted implicitly and automatically
- OSSL relaxes SMM_{AR}'s full supervision assumption, and exploit unlabeled instances to learn an underlying data structure
- OSSL is the first attempt on semi-supervised learning with distributions, with rigorous theoretical proofs provided.
- Extensive experiments to show the efficacy of DSSL.

Questions?

More info in http://hangwei12358.github.io/

References

- [1] Mikhail Belkin, Partha Niyogi, and Vikas Sindhwani. "Manifold Regularization: A Geometric Framework for Learning from Labeled and Unlabeled Examples". In: *Journal of Machine Learning Research* 7 (2006), pp. 2399–2434. URL: http://www.jmlr.org/papers/v7/belkin06a.html.
- [2] Olivier Chapelle and Alexander Zien. "Semi-Supervised Classification by Low Density Separation". In: *AISTATS*. 2005.
- [3] Nils Y. Hammerla et al. "On preserving statistical characteristics of accelerometry data using their empirical cumulative distribution". In: ISWC. 2013, pp. 65–68.
- [4] Jessica Lin et al. "Experiencing SAX: a novel symbolic representation of time series". In: *Data Min. Knowl. Discov.* 15.2 (2007), pp. 107–144.
- [5] Ryunosuke Matsushige, Koh Kakusho, and Takeshi Okadome. "Semi-supervised learning based activity recognition from sensor data". In: GCCE. 2015, pp. 106–107.
- [6] Thomas Plötz, Nils Y. Hammerla, and Patrick Olivier. "Feature Learning for Activity Recognition in Ubiquitous Computing". In: IJCAI. 2011, pp. 1729–1734.
- [7] Hangwei Qian, Sinno Jialin Pan, and Chunyan Miao. "Sensor-Based Activity Recognition via Learning From Distributions". In: AAAI. AAAI Press, 2018.
- [8] Maja Stikic, Diane Larlus, and Bernt Schiele. "Multi-graph Based Semi-supervised Learning for Activity Recognition". In: ISWC. 2009, pp. 85–92.

Kernel Mean Embeddings of Distributions

Figure 2: Illustration of the kernel mean embedding of two different distributions

Injectivity[smola2007hilbert]

A universal kernel *k* can promise an injective mean map $\mu : P_X \rightarrow \mu[P_X]$.

SMM_{AR} Framework

$$\langle \hat{\boldsymbol{\mu}}_{\mathbb{P}_{x}}, \hat{\boldsymbol{\mu}}_{\mathbb{P}_{z}} \rangle = \tilde{k}(\hat{\boldsymbol{\mu}}_{\mathbb{P}_{x}}, \hat{\boldsymbol{\mu}}_{\mathbb{P}_{z}}) = \frac{1}{n_{x} \times n_{z}} \sum_{i=1}^{n_{x}} \sum_{j=1}^{n_{z}} k(\mathbf{x}_{i}, \mathbf{z}_{j}),$$
 (8)

$$\widetilde{k}(\mu_{\mathbb{P}_{x}},\mu_{\mathbb{P}_{z}}) = \langle \psi(\mu_{\mathbb{P}_{x}}),\psi(\mu_{\mathbb{P}_{z}}) \rangle$$
 (9)

Problem Formulation of SMM_{AR}

- Training set: $\{(P_i, y_i)\}, i \in \{1, ..., N\}, x_i \sim P_i, x_i = \{x_{i1}, ..., x_{im_i}\}, y_i \in \{1, ..., L\}$
- Multi-class classifier $\rightarrow C_L^2$ binary classifiers $f, y = f(\phi(\mu_x)) + b$
- Primal Optimization problem:

$$argmin_{f,b}^{1} \|f\|_{\mathcal{H}}^{2} + C \sum_{i=1}^{N} \xi_{i}$$

s.t.y_i = f(\phi(\mu_{x_{i}})) + b
y_{i}f(\phi(\mu_{i})) \ge 1 - \xi_{i}, \forall i
\xi_{i} \ge 0, \forall i
(10)