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Human Activity Recognition

Tremendous applications:
elderly assistant
healthcare
fitness coaching
smart building
gaming
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Human Activity Recognition

A multi-class classification problem
Input: wearable onbody sensor data
Output: activity labels

3 / 23



Overview Prerequisites Proposed DSSL Method Experiments Conclusion

Problem Overview

Sufficient labeled
training data

Sufficient labeled
training data

Proper feature
extraction 

Feature
Extraction 

Model
Learning 

PreprocessingRaw Data Classification Segmentation

Two key prerequisites:
1 expressive feature extraction → discriminate activities
2 sufficient labeled training data → build a precise model
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Problem Overview

Sufficient labeled
training data

Sufficient labeled
training data

Proper feature
extraction 

Feature
Extraction 

Model
Learning 

PreprocessingRaw Data Classification Segmentation

Two key prerequisites:
1 expressive feature extraction → discriminate activities →

dependent on domain knowledge
2 sufficient labeled training data → build a precise model →

require a huge amount of human annotation effort
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Motivation

1 Can we extract as many discriminative features as
possible, in an automatic fashion?
→ kernel mean embedding of distributions, with NO
information loss
→ novel supervised methods SMMAR and R-SMMAR [7]1

2 Can we utilize labeled data as few as possible to
alleviate human annotation effort?
→ Distribution-based Semi-Supervised Learning (DSSL)

1Hangwei Qian, Sinno Jialin Pan, and Chunyan Miao. Sensor-based
activity recognition via learning from distributions. In AAAI’18 (oral).
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Existing Feature Extraction Methods

Frame-level → vectorial-based
Manual feature engineering, statistics of each frame
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Existing Feature Extraction Methods

Frame-level → vectorial-based
Manual feature engineering, statistics of each frame

Segment-level → matrix-based
Statistical, i.e., moments of each segment
Structural

The ECDF method [4]
The SAX method [3, 6]
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Existing Semi-Supervised Methods

LapSVM [1]: manifold learning
▽TSVM [2]: transductive
SSKLR [5]: kernel logistic regression with
Expectation-Maximization algorithm
GLSVM [8]: multi-graph based
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Intuition of Kernel Mean Embedding
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problem: many distributions have
the same mean!
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Intuition of Kernel Mean Embedding
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problem: many distributions have
the same mean!(
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E[x2]

)
as features

problem: many distributions have
the same mean and variance!
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Intuition of Kernel Mean Embedding
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(E[x ]) as features

problem: many distributions have
the same mean!(
E[x ]
E[x2]

)
as features

problem: many distributions have
the same mean and variance! E[x ]
E[x2]
E[x3]

 as features

problem: many distributions still
have the same first 3 moments!
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Intuition of Kernel Mean Embedding
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...
...


The infinite dimensional
features should be able to
discriminate different distributions!
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Kernel Mean Embedding of Distributions
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Figure 1:
Illustrations of kernel
mean embeddings
of a distribution and
embeddings of
empirical examples

µ[Px ] = Ex [k(·, x)] ∈ H (1)

µ[X ] =
1
m

∑m

i=1
k(·, xi) ∈ H (2)

Here X = {x1, ..., xm}
i.i.d .∼ Px , H is the RKHS associated with k .
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Contribution

DSSL: Distribution-based Semi-Supervised Learning

1 All orders of statistical moments features are extracted
implicitly and automatically

2 DSSL relaxes SMMAR ’s full supervision assumption, and
exploit unlabeled instances to learn an underlying data
structure

3 DSSL is the first attempt on semi-supervised learning with
distributions, with rigorous theoretical proofs provided.

4 Extensive experiments to show the efficacy of DSSL.
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Intuition of DSSL

Label annotation is time-consuming
Unlabeled data is abundant and informative
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Intuition of DSSL

Label annotation is time-consuming
Unlabeled data is abundant and informative

what if unlabeled data is available?
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Intuition of DSSL

Intuition: unlabeled data sheds light on the underlying
manifolds of data space
Difficulty:

Classical setting: x ∈ Rn

Our setting: µ[X ] ∈ H
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Distribution-based SSL: Main idea

1 map the activity segments into a RKHS → sufficient
features

2 wrap the RKHS space to reflect the manifold of the data →
modify the similarity measure ⟨f ,g⟩H̆

∆
= ⟨f ,g⟩H̃ + F (f ,g)

data within a manifold (instead of closer Euclidean
distance)→ more similar
data with different labels → less similar
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Challenges

⟨f ,g⟩H̆
∆
= ⟨f ,g⟩H̃ + F (f ,g) (3)

f ∗ = arg min
f∈H̆

1
l

l∑
i=1

ℓ([µPi
]H̃, yi , [f ]H̆) + ∥f∥2

H̆, (4)

1 How to construct the data-dependent kernel by
incorporating unlabeled training data?

2 Is the new space valid? Since a RKHS is defined by inner
product.

3 How to calculate the loss function given two items are not
in the same space?
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Challenge 1/3 Construction of kernel

⟨f ,g⟩H̆
∆
= ⟨f ,g⟩H̃ + ⟨Sf ,Sg⟩V , (5)

where S is a bounded linear operator.
Denote f(µ)=(f (µP1

), ..., f (µPn)),

⟨Sf ,Sf ⟩V = f(µ)Mf(µ)⊤ (6)

In our case, M = rL2, where L is the Laplacian matrix

14 / 23



Overview Prerequisites Proposed DSSL Method Experiments Conclusion

Challenge 2/3 Validity of the new space

Theorem 1

H̆ is a valid RKHS.
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Challenge 3/3 Loss function calculation

f ∗ = arg min
f∈H̆

1
l

l∑
i=1

ℓ([µPi
]H̃, yi , [f ]H̆) + ∥f∥2

H̆, (7)

Proposition 1

H̆ = H̃.

Proposition 2

K̆ = (I + K̃ M)−1K̃ ,

where K̃ with K̃ij = k̃(µPi
,µPj

) is the kernel matrix for H̃ on

µPi
’s, and K̆ is the kernel matrix in the altered space H̆.
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Experimental Setup

labeled training set, unlabeled training set and test set:
0.02:0.1:0.88
evaluation: micro-F1 (miF), macro-F1 (maF)

Table 1: Statistics of datasets used in experiments.

Datasets # Sample # Instances per sample # Feature # Class
Skoda 1,447 68 60 10
HCI 264 602 48 5
WISDM 389 705 6 6
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Experimental Results

Table 2: Experimental results on 3 activity datasets (unit: %).

Methods Skoda HCI WISDM
miF maF miF maF miF maF

Vectorial-based supervised

SVMs 85.7±1.8 42.5±0.9 69.7±9.6 69.6±9.4 41.5±5.2 39.6±6.8
SAX 3 39.6±6.3 18.7±2.9 36.0±3.0 34.7±2.5 34.6±1.4 30.6±1.2
SAX 6 37.2±6.1 18.6±2.8 39.7±7.3 38.4±7.9 34.9±3.0 30.5±5.0
SAX 9 40.3±6.5 19.9±3.2 39.8±8.7 37.0±9.2 33.6±2.9 28.8±5.8
ECDF 5 84.2±2.1 41.6±1.0 67.7±10.1 67.6±9.1 42.1±6.3 40.5±7.7
ECDF 15 79.8±1.5 39.2±0.7 68.4±10.4 68.5±9.6 39.4±3.3 36.2±5.7
ECDF 30 72.6±1.2 35.4±0.3 68.6±11.1 68.7±10.5 37.7±2.5 32.6±4.9
ECDF 45 65.7±2.5 31.5±1.3 68.6±11.4 68.6±10.8 36.4±1.4 31.3±3.6

Vectorial-based semi-supervised

LapSVM 89.7±2.1 44.6±1.2 76.1±4.8 76.3±4.7 40.1±3.8 34.5±3.5
▽TSVM 85.9±2.7 84.8±2.8 75.4±11.5 75.5±11.2 41.3±5.6 39.4±6.9
SSKLR 25.4±19.3 12.1±2.5 24.2±17.2 18.1±10.1 24.6±17.0 17.3±9.9
GLSVM 89.7±2.1 44.5±1.2 75.7±5.8 75.7±5.7 40.4±3.8 33.9±4.0

Distribution-based supervised SMMAR 93.2±0.9 93.1±1.0 82.2±13.4 78.9±18.4 20.5±3.3 11.7±3.9
Distribution-based semi-supervised DSSL 98.8±0.5 98.8±0.5 99.9±0.2 99.9±0.2 56.5±5.1 55.6±5.0
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Experiments Analysis (1/3)

Varying ratios of labeled data
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Experiments Analysis (2/3)

Varying ratios of unlabeled data
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Experiments Analysis (3/3)

Impact of parameter r to the performance
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Conclusion

We propose a novel method, i.e., Distribution-based
Semi-Supervised Learning (DSSL) for human activity
recognition

1 All orders of statistical moments features are extracted
implicitly and automatically

2 DSSL relaxes SMMAR ’s full supervision assumption, and
exploit unlabeled instances to learn an underlying data
structure

3 DSSL is the first attempt on semi-supervised learning with
distributions, with rigorous theoretical proofs provided.

4 Extensive experiments to show the efficacy of DSSL.
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Questions?

More info in http://hangwei12358.github.io/
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Kernel Mean Embeddings of Distributions
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Figure 2: Illustration
of the kernel mean
embedding of two
different distributions

Injectivity[smola2007hilbert]
A universal kernel k can promise an injective mean map
µ : Px → µ[Px ].
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SMMAR Framework

⟨µ̂Px , µ̂Pz ⟩ = k̃(µ̂Px , µ̂Pz ) =
1

nx × nz

nx∑
i=1

nz∑
j=1

k(xi , zj), (8)

k̃(µPx ,µPz ) = ⟨ψ(µPx ), ψ(µPz )⟩ (9)

Embedding kernel k Level-2 kernel K
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Problem Formulation of SMMAR

Training set: {(Pi , yi)}, i ∈ {1, ...,N}, xi ∼ Pi , xi =
{xi1, ..., ximi}, yi ∈ {1, ..., L}
Multi-class classifier → C2

L binary classifiers
f , y = f (ϕ(µx)) + b
Primal Optimization problem:

argmin
f ,b

1
2
∥f∥2

H + C
N∑

i=1

ξi

s.t .yi = f (ϕ(µxi )) + b
yi f (ϕ(µi)) ≥ 1 − ξi , ∀i
ξi ≥ 0,∀i

(10)
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