A Novel Distribution-Embedded Neural Network for Sensor-Based Activity Recognition (IJCAI-19)

Hangwei Qian, Sinno Jialin Pan, Bingshui Da, Chunyan Miao

Nanyang Technological University, Singapore

August 14, 2019

Outline

- 2 Existing Methods
- 3 The Proposed DDNN
- 4 Experiments
- 5 Conclusion

Human Activity Recognition

Tremendous applications:

- elderly assistant
- healthcare
- fitness coaching
- smart building
- gaming

Human Activity Recognition

A multi-class classification problem

- Input: wearable onbody sensor data **X**^{d×N}
- Output: activity labels $y^{N \times 1} \in \{1, ..., n_c\}$

Problem Overview

Problem Overview

Desired feature extraction:

- automatic
- informative

Outline

- 2 Existing Methods
- 3 The Proposed DDNN

4 Experiments

Existing Feature Extraction Methods

Feature engineering

- handcrafted, PCA, Fourier transform
- statistical, structural

Existing Feature Extraction Methods

Feature engineering

- handcrafted, PCA, Fourier transform
- statistical, structural
- 2 Automatic
 - SMM_{AR}, R-SMM_{AR} [2]: all statistical features with kernel mean embedding of distributions

Existing Feature Extraction Methods

- Feature engineering
 - handcrafted, PCA, Fourier transform
 - statistical, structural
- 2 Automatic
 - SMM_{AR}, R-SMM_{AR} [2]: all statistical features with kernel mean embedding of distributions
 - Deep learning models
 - CNNs [3]
 - DeepConvLSTM [1]: 4 CNNs + 2 RNNs

Existing Feature Extraction Methods

Feature engineering

- handcrafted, PCA, Fourier transform
- statistical, structural
- 2 Automatic
 - SMM_{AR}, R-SMM_{AR} [2]: all statistical features with kernel mean embedding of distributions
 - Deep learning models
 - CNNs [3]
 - DeepConvLSTM [1]: 4 CNNs + 2 RNNs
- Combinations
 - deep features, shallow classifiers
 - joint learning of shallow and deep features

Existing Feature Extraction Methods

Feature engineering

- handcrafted, PCA, Fourier transform
- statistical, structural
- classic, domain knowledge incorporated
- X largely dependent on domain expert
- 2 Automatic
 - SMM_{AR}, R-SMM_{AR} [2]: all statistical features with kernel mean embedding of distributions
 - ✓ in an automated fashion, proven to be powerful
 - i.i.d. assumption on data
 - Deep learning models
 - CNNs [3]
 - DeepConvLSTM [1]: 4 CNNs + 2 RNNs
 - additive and automatic
 - x not specifically designed for activity data

Outline

- 1 Problem Overview
- 2 Existing Methods
- 3 The Proposed DDNN
- 4 Experiments
- 5 Conclusion

Contribution

DDNN: Distribution-embedded Deep Neural Network

- Encode the idea of kernel mean embedding of distributions into a deep architecture
- Automatically extract statistical, temporal and spatial features in an end-to-end model
- Extensive experiments to show the efficacy of DDNN

DDNN Framework

Statistical Module f1

- Design a neural network f₁ to learn the statistical feature mapping φ_{f1}(·) automatically
 f₁(X_i) = φ_{f1}(X_i) = ¹/_L Σ^L_{i=1} φ_k(x_{ij}),
- Injectivity $f_1^{-1}(f_1(\mathbf{X}_i)) = \mathbf{X}_i \rightarrow \text{autoencoder}$
- Reconstruction error $\ell_{ae} = \|\mathbf{X}_i f_d(f_e(\mathbf{X}_i))\|$
- An extra loss

$$\ell_{\mathsf{MMD}}(\mathbf{X}_i, f_d(f_e(\mathbf{X}_i))) = \frac{1}{L} \left\| \sum_{j=1}^{L} f_e(\mathbf{x}_{ij}) - f_e(f_d(f_e(\mathbf{x}_{ij}))) \right\|_2$$
(1)

Spatial Module f2

Spatial Module f2:

- Standard CNNs on activity data are along the temporal aspect [3]
- A different perspective: spatial correlations and constraints between sensor placements

More of DDNN Framework

- f_1, f_2, f_3 : statistical, spatial, temporal module
 - $[f_1(\mathbf{X}_i), f_2(\mathbf{X}_i), f_3(\mathbf{X}_i)]$
 - Possible alternative: $f_1([f_2(\mathbf{X}_i), f_3(\mathbf{X}_i)])$.
 - Possible alternative: build a deeper model with these three modules as atom building blocks.

Outline

- 1 Problem Overview
- 2 Existing Methods
- 3 The Proposed DDNN

5 Conclusion

Experimental Setup

- Evaluation: micro-F1 (miF), macro-F1 (maF)
- 4 datasets

Datasets	# train	# val.	# test	# sw	# Feature	# Class	# Subjects
OPPOR ¹	715,785	32,224	121,378	30	113	18	4
UCIHAR ²	941,056	NA	377,216	128	9	6	30
DG ³	312,970	37,122	30,188	32	9	2	10
PAMAP2 ⁴	473,447	90,814	83,366	170	52	12	9

¹OPPOR classes: Open then close the fridge/dishwasher/drawers/doors, toggle the lights on then off, drink while standing/seated, drink coffee, etc

²UCIHAR classes: walking, walking upstairs, walking downstairs, sitting, standing, laying

³DG classes: no freeze, freeze

⁴PAMAP2 classes: household activities and exercise activities

Baselines

Ablation study:

- DDNN-f₁: the proposed deep model without the statistical module. This baseline is set to investigate the efficacy of the statistical module.
- DDNN-f₂: the proposed deep model without the spatial module. This baseline is set to investigate the efficacy of the spatial module.

Baselines

Ablation study:

- DDNN-*f*₁: the proposed deep model without the statistical module. This baseline is set to investigate the efficacy of the statistical module.
- DDNN-f₂: the proposed deep model without the spatial module. This baseline is set to investigate the efficacy of the spatial module.

State-of-the-art:

- CNN_Yang [3]: a state-of-the-art CNN-based model with 3 convolutional layers. We follow the architecture in the paper and reproduce the model.
- DeepConvLSTM [1]: a state-of-the-art model with 4 convolutional layers and 2 LSTM layers. We also follow the architecture and reproduce the model.

Baselines

Ablation study:

- DDNN-f₁: the proposed deep model without the statistical module. This baseline is set to investigate the efficacy of the statistical module.
- DDNN-f₂: the proposed deep model without the spatial module. This baseline is set to investigate the efficacy of the spatial module.

State-of-the-art:

- CNN_Yang [3]: a state-of-the-art CNN-based model with 3 convolutional layers. We follow the architecture in the paper and reproduce the model.
- DeepConvLSTM [1]: a state-of-the-art model with 4 convolutional layers and 2 LSTM layers. We also follow the architecture and reproduce the model.

Other baselines:

• DNN, CNN, LSTM, LSTM-f, LSTM-S, b-LSTM-S

Experimental Results

	DG		OPPOR		UCIHAR		PAMAP2	
Methods	miF	maF	miF	maF	miF	maF	miF	maF
DDNN	92.59	91.61	83.66	86.01	90.53	90.58	93.23	93.38
DDNN-f ₁	91.38	90.67	81.27	84.51	89.96	89.93	87.49	86.84
DDNN-f ₂	89.67	88.97	77.96	82.27	88.60	88.58	89.37	89.43
CNN_Yang	87.96	86.65	9.98	2.95	88.12	88.11	70.17	70.46
DeepConvLSTM	87.21	84.28	75.47	78.92	89.05	89.07	84.31	82.73
DNN	88.91	86.47	77.05	80.25	87.65	87.72	80.31	79.82
CNN	89.23	88.85	10.66	3.56	86.66	86.77	89.75	89.72
LSTM	88.34	86.93	63.17	69.92	74.52	74.75	90.38	90.29
LSTM-f*	67.3	-	67.2	90.8	-	-	92.9	-
LSTM-S*	76.0	-	69.8	91.2	-	-	88.2	-
b-LSTM-S*	74.1	-	74.5	92.7	-	-	86.8	-

Codes

https://github.com/Hangwei12358/IJCAI2019_DDNN

Outline

- 1 Problem Overview
- 2 Existing Methods
- 3 The Proposed DDNN
- 4 Experiments

Conclusion

Distribution-embedded Deep Neural Network (DDNN) for human activity recognition

- Three modules learning statistical, spatial and temporal features
- 2 End-to-end fashion
- Extensive experiments to show the efficacy of DDNN

References

- Francisco Javier Ordez Morales and Daniel Roggen. "Deep Convolutional and LSTM Recurrent Neural Networks for Multimodal Wearable Activity Recognition". In: Sensors 16.1 (2016), p. 115. DOI: 10.3390/s16010115. URL: https://doi.org/10.3390/s16010115.
- [2] Hangwei Qian, Sinno Jialin Pan, and Chunyan Miao. "Sensor-Based Activity Recognition via Learning From Distributions". In: AAAI. 2018.
- Jianbo Yang et al. "Deep Convolutional Neural Networks on Multichannel Time Series for Human Activity Recognition". In: *IJCAI*. AAAI Press, 2015, pp. 3995–4001.