

Latent Independent Excitation for Generalizable Sensor-based Cross-Person Activity Recognition (AAAI-21)

Hangwei Qian, Sinno Jialin Pan, Chunyan Miao

Nanyang Technological University, Singapore

Dec. 2020

19

Outline

1 Overview of Activity Recognition with Edge Devices

2 Motivation

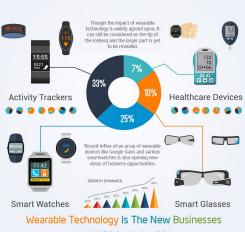
- **3** Existing Methods and Limitations
- 4 The Proposed Method

5 Conclusion

Activity Recognition with Edge Devices

Ubiquitous edge devices

- Mobile phones
- Smart watches
- Smart glasses
- Sports bracelets



WEARABLE TECHNOLOGY INFOGRAPHICS

Image hosted by WittySparks.com | Image Source: BigStock

AAAI-21

Dec. 2020 2/19

Activity Recognition with Edge Devices

Numerous applications: elderly assistance, healthcare, fitness tracking, smart building, gaming, etc

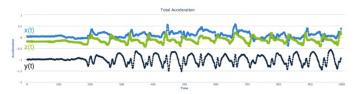
Photo Credit: https://www.betterhealth.vic.gov.au/health/HealthyLiving/Walking-the-benefits-for-older-people; https://www.digitalauthority.me/resources/healthcaremarketing/; https://epfitness.co.uk/the-benefits-of-fitness-tracking/; https://blog.bosch-si.com/projects/bosch-singapore-campus-smart-building-concept-turned-reality/

Qian Hangwei (NTU)

Human Activity Recognition

A multi-class classification problem

- \bullet Input: data $\mathbf{X}^{M\times N}$ collected from accelerometers
- \bullet Output: activity labels $y^{N\times 1} \in \{1,...,n_c\}$



Outline

Overview of Activity Recognition with Edge Devices

2 Motivation

- **3** Existing Methods and Limitations
- 4 The Proposed Method

5 Conclusion

Classification performance drops when a model is trained on young people while tested on elder people

Photo Credit: https://www.ramblers.org.uk/advice/facts-and-stats-about-walking.aspx https://www.betterhealth.vic.gov.au/health/HealthyLiving/Walking-the-benefits-for-older-people

- train/test split: overlapping VS non-overlapping
- \bullet Larger diversity \rightarrow more severe performance drop

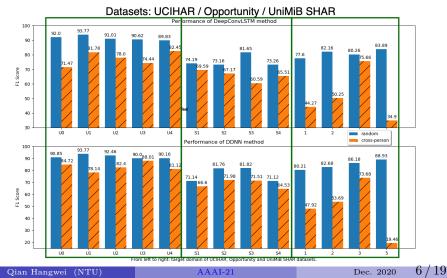


Photo Credit: https://www.ramblers.org.uk/advice/facts-and-stats-about-walking.aspx https://www.betterhealth.vic.gov.au/health/HealthyLiving/Walking-the-benefits-for-older-people

Domain gaps

- ▶ Different ages, health status, movement patterns
- ▶ Different environments, constraints, emergency situations

2 Dataset bias

Cover a subset of population

Photo Credit: https://www.ramblers.org.uk/advice/facts-and-stats-about-walking.aspx https://www.betterhealth.vic.gov.au/health/HealthyLiving/Walking-the-benefits-for-older-people

- Domain gaps
 - Different ages, health status, movement patterns
 - ▶ Different environments, constraints, emergency situations
- 2 Dataset bias
 - Cover a subset of population

Q: How to train a model that is readily generalizable to unseen target domains?

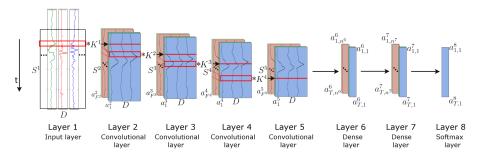
Outline

- Overview of Activity Recognition with Edge Devices
- 2 Motivation
- **③** Existing Methods and Limitations
- 4 The Proposed Method

5 Conclusion

Improving Model Capacity

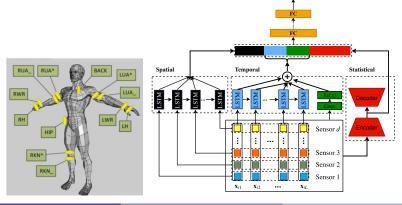
CNN_Yang model and DeepConvLSTM model [2]



Improving Model Capacity

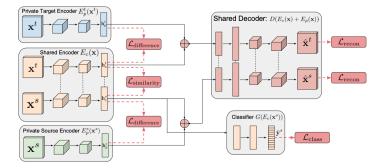
Distribution-embedded Deep Neural Network [3]

- Temporal module
- Statistical module: moments features in deep model
- Spatial module with a different perspective: spatial correlations and constraints between sensor placements

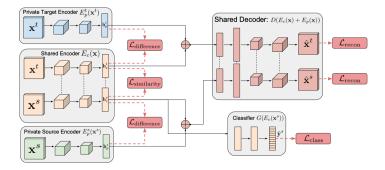


Qian Hangwei (NTU)

Domain Separation Networks [1]: shared-private network structure

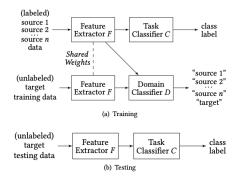


Domain Separation Networks [1]: shared-private network structure



- \times single source and target domain
- **×** target domain data needs to be accessible at training phase
- \checkmark target domain is fixed, otherwise the model should be re-trained

Multi-source domain adaptation with weak supervision [4] Assume that the target domain's label proportion is available



Multi-source domain adaptation with weak supervision [4] Assume that the target domain's label proportion is available



 \bigstar target domain data and label proportion need to be accessible at training phase

 \checkmark target domain is fixed, otherwise the model should be re-trained

Qian Hangwei (NTU)

Outline

- Overview of Activity Recognition with Edge Devices
- 2 Motivation
- **3** Existing Methods and Limitations
- 4 The Proposed Method

5 Conclusion

The Proposed Method

Input: labeled data from D source domains $\{(X^d, y^d) \sim \mathbb{P}^d(x, y)\}_{d=1}^D$ Goal: to train a deep model f to generalize well to unseen target domain data $X^{\tilde{d}}$

Generalizable Independent Latent Excitation (GILE) model

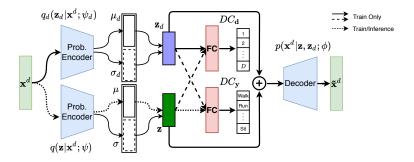
- Backbone: VAE
- Feature disentanglement
- Independent excitation mechanism
- Does not require access to any information from target domain
 Readily generalizable to any unseen target domain

Disentangle features into two types

- domain-agnostic features z
 - ▶ to capture the commonality of conducting the same activity among different people
 - ▶ to generalize well to unseen target domains
- \bullet domain-specific features $\mathbf{z}_{\mathbf{d}}$ of domain \mathbf{d}

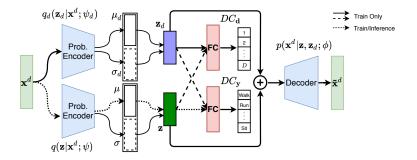
Disentangle features into two types

- domain-agnostic features z
 - ► to capture the commonality of conducting the same activity among different people
 - ▶ to generalize well to unseen target domains
- \bullet domain-specific features $\mathbf{z}_{\mathbf{d}}$ of domain \mathbf{d}



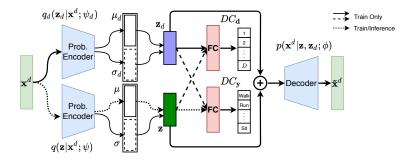
VAE backbone loss:

$$\begin{split} \mathcal{L}_{elbo} &= \mathbb{E}_{d,q_d(z_d|x^d;\psi_d),q(z|x^d;\psi)}[\log p(x^d|z_d,z;\phi)] \\ &- \mathrm{KL}(q_d(z_d|x^d;\psi_d)||p(z_d)) \\ &- \mathrm{KL}(q(z|x^d;\psi)||p(z)), \end{split}$$



Two disentangling classifiers DC_y and DC_d :

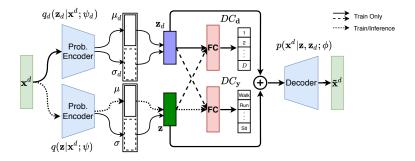
$$\mathcal{L}_{DC} = \frac{1}{N_S} \sum_{d=1}^{D} \sum_{i=1}^{N_d} [\ell(y_i^d, DC_y(z; w_y)) + \ell(d, DC_d(z_d; w_d))].$$
(1)



Independent Excitation Mechanism

Minimize the correlations between domain-agnostic and domain-specific features

$$\mathcal{L}_{IE} = -\frac{1}{N_S} \sum_{d=1}^{D} \sum_{i=1}^{N_d} [\ell(y_i^d, DC_y(z_d; w_y)) + \ell(d, DC_d(z; w_d))].$$
(2)



Experimental Settings

Datasets

- UCIHAR
 - ▶ 5 domains, 9 features
 - ▶ 6 daily activities: walking, sitting, laying, standing, walking upstairs, walking downstairs
- Opportunity
 - ▶ 4 domains, 77 features
 - 18 gestures: open / close dishwasher / fridge /drawer1 /door1 / drawer2 / door2 / drawer3, move cup, clean table, null
- UniMiB SHAR
 - ▶ 4 domains, 3 features
 - ▶ 9 types of daily living and 8 types of falls

Evaluation: Leave-One-Subject-Out Measure: F1 score

Overall Results

Evaluations on UCIHAR and Opportunity dataset

Source	Target	VAE	β -VAE	DIVA	DDNN	DeepConvLSTM	CoDATS	GILE
1,2,3,4	0	51.87	53.31	75.00	<u>84.72</u>	71.47	81.27	85.15
0,2,3,4	1	44.70	44.37	77.18	78.14	81.78	55.63	81.56
0,1,3,4	2	64.22	62.17	71.61	<u>82.40</u>	78.00	77.42	86.97
0,1,2,4	3	36.91	49.21	81.87	88.01	74.44	60.57	94.37
0,1,2,3	4	39.07	58.28	79.68	81.12	82.45	66.23	92.81
Ave.		47.35	53.47	77.07	<u>82.88</u>	77.63	68.22	88.17

Table 1: The overall performance on the UCIHAR dataset (unit: %). The best performance is highlighted in bold, and the second best performance is underlined.

Source	Target	VAE	β -VAE	DIVA	DDNN	DeepConvLSTM	CoDATS	GILE
S2,S3,S4	S 1	77.21	11.48	75.86	66.6	69.59	83.58	83.86
S1,S3,S4	S2	73.94	61.02	73.54	71.98	67.17	<u>81.04</u>	81.65
S1,S2,S4	S 3	15.65	31.72	65.81	71.51	60.59	78.11	78.66
S1,S2,S3	S4	75.86	13.65	73.43	64.53	65.51	80.60	81.41
Ave.		60.67	29.47	72.16	68.66	65.72	80.83	81.40

Table 2: The overall performance on the Opportunity dataset (unit: %). The best performance is highlighted in bold, and the second best performance is underlined.

Overall Results

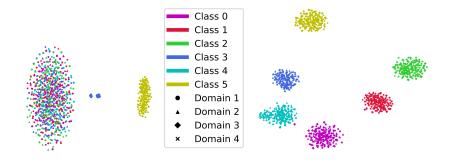
Evaluations on UniMiB SHAR dataset

Source	Target	VAE	β -VAE	DIVA	DDNN	DeepConvLSTM	CoDATS	GILE
2,3,5	1	11.72	15.63	48.17	47.92	44.27	42.71	55.72
1,3,5	2	32.76	32.76	39.06	53.69	50.26	46.66	54.06
1,2,5	3	22.37	26.97	61.87	73.68	75.66	61.51	70.31
1,2,3	5	29.19	30.20	38.43	19.46	34.90	31.88	42.81
Ave.		24.01	26.39	46.88	48.69	51.27	45.69	55.61

Table 3: The overall performance on the UniMiB SHAR dataset (unit: %). The best performance is highlighted in bold, and the second best performance is underlined.

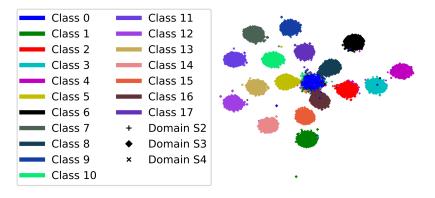
Latent Feature Space Visualization

The t-SNE embeddings of the learned domain-agnostic features by 1) VAE and 2) GILE method on UCIHAR dataset



Latent Feature Space Visualization

The t-SNE embedding of the learned domain-agnostic features by GILE method on Opportunity dataset



Outline

- **D** Overview of Activity Recognition with Edge Devices
- 2 Motivation
- **3** Existing Methods and Limitations
- 4 The Proposed Method

Conclusion

The GILE model for the cross-person activity recognition task

- Feature disentanglement
- Independent excitation mechanism

The model's advantages:

- \checkmark Does not require access to any information from target domain
- \checkmark Readily generalizable to any unseen target domain
- ✓ Consistently outperforms state-of-the-art methods empirically

Questions?

More info: http://hangwei12358.github.io/ Discussion and cooperation are welcome!

References

- Konstantinos Bousmalis et al. "Domain Separation Networks". In: NIPS. 2016, pp. 343–351.
- [2] Francisco Javier Ordóñez Morales and Daniel Roggen. "Deep Convolutional and LSTM Recurrent Neural Networks for Multimodal Wearable Activity Recognition". In: Sensors 16.1 (2016), p. 115.
- [3] Hangwei Qian et al. "A Novel Distribution-Embedded Neural Network for Sensor-Based Activity Recognition". In: IJCAI 2019, Macao, China, August 10-16, 2019. ijcai.org, 2019, pp. 5614–5620.
- [4] Garrett Wilson, Janardhan Rao Doppa, and Diane J. Cook.
 "Multi-Source Deep Domain Adaptation with Weak Supervision for Time-Series Sensor Data". In: KDD. ACM, 2020, pp. 1768–1778.